forked from eggy/eifueo
ece205: catch up on last week
This commit is contained in:
parent
90df8ccf04
commit
cb9e3e2308
@ -308,6 +308,145 @@ Substituting it into the IBVP results in a **separation constant** $-\lambda$.
|
|||||||
|
|
||||||
$$\boxed{\frac{T'(t)}{a^2T(t)}=\frac{X''(x)}{X(x)}=-\lambda}$$
|
$$\boxed{\frac{T'(t)}{a^2T(t)}=\frac{X''(x)}{X(x)}=-\lambda}$$
|
||||||
|
|
||||||
|
Possible values for the separation constant are known as **eigenvalues**, and their corresponding **eigenfunctions** contain the unknown constant $a_n$:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\lambda_n=\left(\frac{n\pi}{L}\right)^2 \\
|
||||||
|
X_n(x)=a_n\sin(\frac{n\pi x}{L})
|
||||||
|
$$
|
||||||
|
|
||||||
|
### Wave equation
|
||||||
|
|
||||||
|
A string stretched between two secured points at $x=0$ and $x=L$ can be represented by the following IBVP:
|
||||||
|
|
||||||
|
$$
|
||||||
|
u_{tt}=a^2u_{xx},0<x<L,t>0 \\
|
||||||
|
u(0,t)=u(L,t)=0,t>0 \\
|
||||||
|
u(x,0)=f(x), 0\leq x\leq L \\
|
||||||
|
u_t(x,0)=g(x), 0\leq x\leq L
|
||||||
|
$$
|
||||||
|
|
||||||
|
The following conditions must be met:
|
||||||
|
|
||||||
|
$$
|
||||||
|
u(x,t)=\sum^\infty_{n=1}\sin(\frac{n\pi x}{L})\left(\alpha_n\cos(\frac{n\pi a}{L}t)+\beta_n\sin(\frac{n\pi a}{L}t)\right) \\
|
||||||
|
\boxed{f(x)=\sum^\infty_{n=1}\alpha_n\sin(\frac{n\pi x}{L}),0\leq x\leq L} \\
|
||||||
|
\boxed{g(x)=\sum^\infty_{n=1}\frac{n\pi a}{L}\beta_n\sin(\frac{n\pi x}{L}), 0\leq x\leq L}
|
||||||
|
$$
|
||||||
|
|
||||||
|
### Fourier symmetry
|
||||||
|
|
||||||
|
To find a Fourier series for functions defined only on $[0, L]$ instead of $[-L, L]$, a **periodic extension** can be used.
|
||||||
|
|
||||||
|
A **half-range sine expansion (HRS)** is used for odd functions:
|
||||||
|
|
||||||
|
$$
|
||||||
|
f_o(x)=\begin{cases}
|
||||||
|
f(x) & x\in(0, L) \\
|
||||||
|
-f(-x) & x\in(-L, 0)
|
||||||
|
\end{cases}
|
||||||
|
$$
|
||||||
|
|
||||||
|
A **half-range cosine expansion (HRC)** is used for even functions:
|
||||||
|
|
||||||
|
$$
|
||||||
|
f_e(x)=\begin{cases}
|
||||||
|
f(x) & x\in(0, L) \\
|
||||||
|
f(-x) & x\in(-L, 0)
|
||||||
|
\end{cases}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Thus if a Fourier series on $(0,L)$ exists, it can be expressed as either a **Fourier sine series** (via HRS) or a **Fourier cosine series** (via HRC).
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
For $f(x)=\begin{cases}\frac\pi 2 & [0,\frac\pi 2] \\ x-\frac\pi 2 & (\frac\pi2,\pi]\end{cases}$:
|
||||||
|
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
a_n&=\frac 2 L\int^L_0f(x)\cos(\frac{n\pi x}{L})dx \\
|
||||||
|
&=\frac 2\pi \int^{\pi/2}_0\frac\pi 2\cos(\frac{n\pi x}{\pi})dx + \frac 2 \pi\int^\pi_{\pi/2}(x-\frac\pi2)\cos(\frac{n\pi x}{\pi})dx \\
|
||||||
|
&=\frac{2}{n^2\pi}[(-1)^n-\cos(\frac{n\pi}{2})+\frac{n\pi}{2}\sin(\frac{n\pi}{2}) \\
|
||||||
|
\\
|
||||||
|
a_0&=\frac2\pi\int^\pi_0f(x)\cos(0)dx \\
|
||||||
|
&=\frac{3\pi}{4} \\
|
||||||
|
\\
|
||||||
|
\therefore f(x)&=\frac{3\pi}{8}+\sum^\infty_{n=1}\frac{2}{n^2\pi^2}[(-1)^n-\cos(\frac{n\pi}{2})+\frac{n\pi}{2}\sin(\frac{n\pi}{2})]\cos(nx),x\in[0,\pi]
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
For:
|
||||||
|
|
||||||
|
$$
|
||||||
|
u_t=2u_{xx},0<x<\pi,t:0 \\
|
||||||
|
u(0,t)=u(\pi,t)=0,t>0 \\
|
||||||
|
u(x,0)=\begin{cases}
|
||||||
|
\frac\pi 2 & [0,\frac\pi 2] \\
|
||||||
|
x-\frac\pi 2 & (\frac\pi 2,\pi]
|
||||||
|
\end{cases}
|
||||||
|
$$
|
||||||
|
|
||||||
|
We have $L=\pi,a=\sqrt 2$.
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
u(x,t)&=\sum^\infty_{n=1}\alpha_ne^{-left(\frac{n\pi\sqrt 2}{\pi}\right)^2t}\sin(\frac{n\pi x}{\pi})
|
||||||
|
&=\sum^\infty_{n=1}\apha_ne^{-2n^2t}\sin(nx) \\
|
||||||
|
\alpha_n&=\frac 2 L\int^L_0f(x)\sin(\frac{n\pi x}{L})dx \\
|
||||||
|
&=\frac2\pi\int^{\pi/2}_0\frac\pi 2\sin(nx)dx+\frac2\pi\int^\pi_{\pi/2}(x-\frac\pi2\sin(nx)dx \\
|
||||||
|
&=\frac 1 n[1+(-1)^{n+1}-\cos(\frac{n\pi}{2})-\frac{2}{n\pi}\sin(\frac{n\pi}{2}]
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
### Convergence of Fourier series
|
||||||
|
|
||||||
|
!!! definition
|
||||||
|
- $f(x^+)=\lim_{h\to0^+}f(x+h)$
|
||||||
|
- $f(x^-=\lim_{h\to0^-}f(x+h)$
|
||||||
|
|
||||||
|
If $f$ and $f'$ are piecewise continuous on $[-L, L]$ for $x\in(-L,L)$, where $a_n$ and $b_n$ are from the Euler-Fourier formulae:
|
||||||
|
|
||||||
|
$$\frac{a_0}{2}+\sum^\infty_{n=1}a_n\cos(\frac{n\pi x}{L})+b_n\sin(\frac{n\pi x}{L})=\boxed{\frac 1 2[f(x^+)+f(x^-)]}$$
|
||||||
|
|
||||||
|
At $x=\pm L$, the series converges to $\frac 1 2[f(-L^+)+f(L^-)]$. This implies:
|
||||||
|
|
||||||
|
- A continuous $f$ converges to $f(x)$
|
||||||
|
- A discontinuous $f$ has the Fourier series converge to the average of the left and right limits
|
||||||
|
- Extending $f$ to infinity using periodicity allows it to hold for all $x$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
The square wave function $f(x)=\begin{cases}-1 & -\pi<x<0 \\ 1 & 0<x<\pi\end{cases},f(x+2\pi)=f(x)$:
|
||||||
|
|
||||||
|
$f$ and $f'$ are piecewise continuous, but the function is discontinuous at $k\pi,k\in\mathbb Z$. Thus at $x=\pm\pi$, the series converges to $\frac 1 2(-1+1)=0$. At $x=0$, the series converges to $\frac 1 2(1+(-1))=0$.
|
||||||
|
|
||||||
|
If $f$ is 2L-periodic and continuous on $-\infty,\infty$, and $f'$ is piecewise continuous on $[-L,L]$, the Fourier series converges **uniformly** to $f$ on $[-L,L]$ and thus any interval.
|
||||||
|
|
||||||
|
More formally, for every $\epsilon>0$, there exists an integer $N_0$ depending on $\epsilon$ such that $|f(x)-[\frac{a_0}{2}+\sum^N_{n=1}a_n\cos(\frac{n\pi x}{L})+b_n\sin(\frac{n\pi x}{L})]|<\epsilon$ for all $N\geq N_0$ and all $x\in(-\infty,\infty)$.
|
||||||
|
|
||||||
|
More intuitively, for a high enough summation of the Fourier series, the value must lie in an **$\epsilon$-corridor** of $f(x)$ such that $f(x)$ is always between $f(x)\pm\epsilon$.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
- The Fourier series for the triangle wave function **is** uniformly convergent.
|
||||||
|
- The Fourier series for the square wave function **is not** uniformly convergent, which means that Gibbs overshoots would not fit in an arbitrarily small $\epsilon$-corridor.
|
||||||
|
|
||||||
|
The **Weierstrass M-test** states that if $|a_n(x)|\leq M_n$ for all $x\in[a,b]$ and if $\sum^\infty_{n=1}M_n$ converges, then $\sum^\infty_{n=1}a_n(x)$ converges uniformly to $f(x)$ on $[a,b]$.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
$\sum^\infty_{n=1}\frac{1}{n^2}\cos(nx)$ converges uniformly on any finite closed interval $[a,b]$.
|
||||||
|
|
||||||
|
$|\frac{\cos(nx)}{n^2}|\leq\frac{1}{n^2}$ for all $x$, and $\sum^\infty_{n=1}\frac{1}{n^2}$ also converges. Thus the result follows from the M-test.
|
||||||
|
|
||||||
|
### Differentiating Fourier series
|
||||||
|
|
||||||
|
You can termwise differentiate the Fourier series of $f(x)$ only if:
|
||||||
|
|
||||||
|
- $f(x)$ is continuous on $(-\infty,\infty)$ and 2L-periodic
|
||||||
|
- $f'(x),f''(x)$ are both piecewise continuous on $[-L,L]$
|
||||||
|
|
||||||
|
You can termwise integrate the Fourier series of $f(x)$ only if $f(x)$ is piecewise continuous on $[-L,L]$.
|
||||||
|
|
||||||
|
Then, for any $x\in[-L,L]$:
|
||||||
|
|
||||||
|
$$\int^x_{-L}f(t)dt=\int^x_{-L}\frac{a_0}{2}dt+\sum^\infty_{n=1}\int^x_{-L}(a_n\cos(\frac{n\pi t}{L})+b_n\sin(\frac{n\pi t}{L}))dt$$
|
||||||
|
|
||||||
|
|
||||||
## Resources
|
## Resources
|
||||||
|
|
||||||
- [Laplace Table](/resources/ece/laplace.pdf)
|
- [Laplace Table](/resources/ece/laplace.pdf)
|
||||||
|
Loading…
Reference in New Issue
Block a user