forked from eggy/eifueo
ece108: add expected value
This commit is contained in:
parent
b515e87977
commit
ccd737b4aa
@ -932,3 +932,27 @@ Formally, this can be solved without $Pr\{B\}$:
|
|||||||
|
|
||||||
$$Pr\{A|B\}=\frac{Pr\{A\}Pr\{B|A\}}{Pr\{A\}Pr\{B|A\}+Pr\{\overline A\}Pr\{B|\overline A\}}$$
|
$$Pr\{A|B\}=\frac{Pr\{A\}Pr\{B|A\}}{Pr\{A\}Pr\{B|A\}+Pr\{\overline A\}Pr\{B|\overline A\}}$$
|
||||||
|
|
||||||
|
### Expected value
|
||||||
|
|
||||||
|
The **expected value**, **mean**, or **expectation of $X$** is:
|
||||||
|
|
||||||
|
$$E[X]=\sum_{x\in\mathbb R}x\cdot Pr\{X=x\}=\sum_{s\in S}X(s)\cdot Pr\{\{s\}\}$$
|
||||||
|
|
||||||
|
This operation is **linear**, but multiplies using AND:
|
||||||
|
|
||||||
|
$$
|
||||||
|
E[X+Y]=E[X}+E[Y] \\
|
||||||
|
E[XY]=\sum_{x\in X,y\in Y}xy\cdotPr\{X=x\wedge y\=y\}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Thus if $X$ and $Y$ are independent:
|
||||||
|
|
||||||
|
$$E[XY]=E[X]E[Y]$$
|
||||||
|
|
||||||
|
An **indicator random variable** only has two possible outcomes: zero or one. Thus an indicator random variable $X$ has an expected value equal to its probability:
|
||||||
|
|
||||||
|
$$E[X]=Pr\{X=1\}$$
|
||||||
|
|
||||||
|
The **covariance** of $X$ and $Y$ represents the direction of difference of $X$ and $Y$ from their means.
|
||||||
|
|
||||||
|
$$Cov[X,Y]=E[XY]-E[X]E[Y]$$
|
||||||
|
Loading…
Reference in New Issue
Block a user