From d8ad88103e4f7b05b9b6e2ce3e991fab1fba9012 Mon Sep 17 00:00:00 2001 From: eggy Date: Thu, 7 Jan 2021 22:25:23 -0500 Subject: [PATCH] math: all the derivatives --- docs/mhf4u7.md | 53 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 53 insertions(+) diff --git a/docs/mhf4u7.md b/docs/mhf4u7.md index d693351..2d51c30 100644 --- a/docs/mhf4u7.md +++ b/docs/mhf4u7.md @@ -2,6 +2,27 @@ The course code for this page is **MHF4U7**. +## Basic math — move later + +### Logarithm rules + +The logarithm of a product can be rewritten as the sum of two logarithms. +$$\log_c(ab)=\log_c(a)+\log_c(b)$$ + +The logarithm of a quotient can be rewritten as the difference of two logarithms. +$$\log_c\biggr(\frac{a}{b}\biggr)=\log_c(a)-\log_c(b)$$ + +The exponentials of a logarithm can be brought down to be coefficients. +$$\log_c(a^n)=n\log_c(a)$$ + +Some simple values can be easily found. + +$$ +a^{\log_a(x)}=x \\ +\log_a(a)=1 \\ +\log_a(1)=0 +$$ + ## 3 - Geometry and trigonometry To find the result of a primary trig ratio, the related acute angle (RAA) should first be found before referring to the CAST rule to determine quadrants before identifying all correct answers in the domain. @@ -32,6 +53,13 @@ $$ \tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta} $$ +### Euler's number + +Euler's number $e$ is a constant irrational number represented as a special limit in calculus. +$$e=\lim_{x\to ∞}\biggr(1+\frac{1}{x}\biggr)^x$$ + +The inverse of $e^x$ is $\log_e(x)$, which is known as the **natural logarithm** and can be rewritten as $\ln(x)$ ("lawn x"). + ## 4 - Statistics and probability !!! note "Definition" @@ -552,6 +580,31 @@ The **chain rule** applies to trigonometric functions and will be applied recurs Trigonometric identities are not polynomial so values on an interval need to be determined by substituting values between vertical asymptotes and critical points. +### Extended derivative rules + +For an **exponential function** where $f(x)=b^x,b≠0$ or $f(x)=b^{g(x)}$, respectively: + +$$ +f´(x)=b^x\cdot\ln(b) \\ +f´(g(x))=b^{g(x)}\cdot\ln(b)\cdot g´(x) +$$ + +For a **logarithmic function** where $f(x)=\log_b(x)$ or $f(x)=\log_b(g(x))$, respectively: + +$$ +f´(x)=\frac{1}{\ln(b)\cdot x} \\ +f´(x)=\frac{g´(x)}{\ln(b)\cdot g(x)} +$$ + +From the above base derivatives the derivatives for functions involving $e$ and the **natural logarithm** can be found: + +$$ +\frac{d}{dx}e^x=e^x \\ +\frac{d}{dx}e^{g(x)}=e^{g(x)}\cdot g´(x) \\ +\frac{d}{dx}\ln(x)=\frac{1}{x} \\ +\frac{d}{dx}\ln(g(x))=\frac{g´(x)}{g(x)} +$$ + ### Higher order derivatives The **second derivative** of $f(x)$ is the derivative of the first derivative of $f(x)$, that is, $f´´(x)$.