diff --git a/docs/2a/ece205.md b/docs/2a/ece205.md index 7188490..c1a6032 100644 --- a/docs/2a/ece205.md +++ b/docs/2a/ece205.md @@ -453,6 +453,42 @@ Then, for any $x\in[-L,L]$: $$\int^x_{-L}f(t)dt=\int^x_{-L}\frac{a_0}{2}dt+\sum^\infty_{n=1}\int^x_{-L}(a_n\cos(\frac{n\pi t}{L})+b_n\sin(\frac{n\pi t}{L}))dt$$ +### Complex Fourier series + +By employing Euler's theorem, sine and cosine can be transformed into exponential forms. + +$$ +\cos(\frac{n\pi x}{L})=\frac{e^{i\frac{n\pi x}{L}} + e^{-i\frac{n\pi x}{L}}}{2} \\ +\sin(\frac{n\pi x}{L})=\frac{-ie^{i\frac{n\pi x}{L}} + ie^{-i\frac{n\pi x}{L}}}{2} +$$ + +Thus the **complex Fourier series** is given by: + +$$ +f(x)=\sum^\infty_{n=-\infty}c_ne^{i\frac{n\pi x}{L}} \\ +c_n=\frac{1}{2L}\int^L_{-L}f(x)e^{-i\frac{n\pi x}{L}}dx = \frac 1 2(a_n-ib_n) +$$ + +To convert it to a real Fouier series: + +- $a_0=2c_0$ +- $a_n=c_n+\overline{c_n}$ +- $b_n=i(c_n-\overline{c_n})$ + +!!! example + The complex Fourier series for the sawtooth wave function: $f(x)=x,-1