# ECE 205: Advanced Calculus 1 ## Laplace transform The Laplace transform is a wonderful operation to convert a function of $t$ into a function of $s$. Where $s$ is an unknown variable independent of $t$: $$ \mathcal L\{f(t)\}=F(s)=\int^\infty_0e^{-st}f(t)dt, s > 0 $$ ??? example To solve for $\mathcal L\{\sin(at)\}$: \begin{align*} \mathcal L\{f(t)\}&=\int^\infty_0e^{-st}\sin(at)dt \\ \\ \text{IBP: let $u=\sin(at)$, $dv=e^{-st}dt$:} \\ &=\lim_{B\to\infty} \underbrace{\biggr[ \cancel{-\frac 1 se^{-st}\sin(at)}}_\text{0 when $s=0$ or $s=\infty$}+\frac a s\int e^{-st}\cos(at)dt \biggr]^B_0 \\ &=\frac a s\lim_{B\to\infty}\left[\int e^{-st}\cos(at)dt \right]^B_0 \\ \text{IBP: let $u=\cos(at)$, $dv=e^{-st}dt$:} \\ &=\frac a s \lim_{B\to\infty}\left[ -\frac 1 s e^{-st}\cos(at)-\frac a s\underbrace{\int e^{-st}\sin(at)dt}_{\mathcal L\{\sin(at)\}} \right]^B_0 \\ &=\frac{a}{s^2}-\frac{a^2}{s^2}\mathcal L\{\sin(at)\} \\ \mathcal L\{\sin(at)\}\left(1+\frac{a^2}{s^2}\right)&=\frac{a}{s^2} \\ \mathcal L\{\sin(at)\}&=\frac{a}{a^2+s^2}, s > 0 \end{align*} A **piecewise continuous** function on $[a,b]$ is continuous on $[a,b]$ except for a possible finite number of finite jump discontinuities. - This means that any jump discontinuities must have a finite limit on both sides. - A piecewise continuous function on $[0,\infty)$ must be piecewise continuous $\forall B>0, [0,B]$. The **exponential order** of a function is $a$ if there exist constants $K, M$ such that: $$|f(t)|\leq Ke^{at}\text{ when } t\geq M$$ !!! example - $f(t)=7e^t\sin t$ has an exponential order of 1. - $f(t)=e^{t^2}$ does not have an exponential order. ### Linearity A **piecewise continuous** function $f$ on $[0,\infty)$ of an exponential order $a$ has a defined Laplace transform for $s>a$. Laplace transforms are **linear**. If there exist LTs for $f_1, f_2$ for $s>a_1, a_2$, respectively, for $s=\text{max}(a_1, a_2)$: $$\mathcal L\{c_1f_1 + c_2f_2\} = c_1\mathcal L\{f_1\} + c_2\mathcal L\{f_2\}$$ ??? example We find the Laplace transform for the following. $$ f(t)=\begin{cases} 1 & 0\leq t < 1 \\ e^{-t} & t\geq 1 \end{cases} $$ Clearly $f(t)$ is piecewise ocontinuous on $[0,\infty)$ and has an exponential order of -1 when $t\geq 1$ and 0 when $0\leq t<1$. Thus $\mathcal L\{f(t)\}$ is defined for $s>0$. \begin{align*} \mathcal L\{f(t)\}&=\int^1_0 e^{-st}dt + \int^\infty_1e^{-st}e^{-t}dt \\ \tag{$s\neq 0$}&=\left[-\frac 1 s e^{-st}\right]^1_0 + \int^\infty_1e^{t(-s-1)}dt \\ &=-\frac 1 se^{-s}+\frac 1 s + \lim_{B\to\infty}\left[ \frac{1}{-s-1}e^{t(-s-1)} \right]^B_1 \\ \tag{$s\neq 0,s>-1$}&=\frac{-e^{-s}+1}{s} -\frac{e^{-s-1}}{-s-1} \end{align*} We solve for the special case $s=0$: \begin{align*} \mathcal L\{f(t)\}&=\int^1_0 e^{0}dt + \int^\infty_1e^{-st}e^{-t}dt \\ &=1 -\frac{e^{-s-1}}{-s-1} \\ \end{align*} $$ \mathcal L\{f(t)\}= \begin{cases} \frac{-e^{-s}+1}{s}-\frac{e^{-s-1}}{-s-1} & s\neq 0, s>-1 \\ 1-\frac{e^{-s-1}}{-s-1} &s=0 \end{cases} $$ If there exists a transform for $s>a$, the original function multiplied by $e^{-bt}$ exists for $s>a+b$. $$\mathcal L\{f(t)\}=F(s), s>a\implies \mathcal L\{e^{-bt}f(t)\}=F(s),s>a+b$$ ### Inverse transform The inverse is found by manipulating the equation until you can look it up in the [Laplace Table](#resources). The inverse transform is also **linear**. ### Inverse of rational polynomials If the transformed function can be expressed as a partial fraction decomposition, it is often easier to use linearity to reference the table. $$\mathcal L^{-1}\left\{\frac{P(s)}{Q(s)}\right\}$$ - $Q, P$ are polynomials - $\text{deg}(P) > \text{deg}(Q)$ - $Q$ is factored ??? example \begin{align*} \mathcal L^{-1}\left\{\frac{s^2+9s+2}{(s-1)(s^2+2s-3)}\right\} &=\mathcal L^{-1}\left\{\frac{A}{s-1}+\frac{B}{s+3} + \frac{Cs+D}{(s-1)^2}\right\} \\ &\implies A=2,B=3,C=-1 \\ &=2\mathcal L^{-1}\left\{\frac{1}{s-1}\right\} + 3\mathcal L^{-1}\left\{\frac{1}{(s-1)^2}\right\}-\mathcal L^{-1}\left\{\frac{1}{s+3}\right\} \\ &=2e^t+3te^t-e^{-3t} \end{align*} ### Inverse of differentiable equations If a function $f$ is continuous on $[0,\infty)$ and its derivative $f'$ is piecewise continuous on $[0,\infty)$, for $s>a$: $$ \mathcal L\{ f'\}=s\mathcal L\{f\}-f(0) \\ \mathcal L\{ f''\} = s^2\mathcal L\{f\}-s\cdot f(0)-f'(0) $$ ### Solving IVPs Applying the Laplace transform to both sides of an IVP is valid to remove any traces of horrifying integration. !!! example \begin{align*} y''-y'-2y=0, y(0)=1, y'(0)=0 \\ \mathcal L\{y''-y'-2y\}&=\mathcal L\{0\} \\ s^2\mathcal L\{y\}-s\cdot y(0)-y'(0) - s\mathcal L\{y\} +y(0) - 2\mathcal L\{y\}&=0 \\ \mathcal L\{y\}(s^2-s-2)-s+1&=0 \\ \mathcal L\{y\}&=\frac{s-1}{(s-2)(s+1)} \\ &= \\ \mathcal L^{-1}\{\mathcal L\{y\}\}&=\mathcal L^{-1}\left\{ \frac 1 3\cdot\frac{1}{s-2} + \frac 2 3\cdot\frac{1}{s+1} \right\} \\ y&=\frac 1 3\mathcal L^{-1}\left\{\frac{1}{s-2}\right\} + \frac 2 3\mathcal L^{-1}\left\{\frac{1}{s+1}\right\} \\ \tag{from Laplace table}&=\frac 1 3 e^{2t} + \frac 2 3 e^{-t} \end{align*} ### Heaviside / unit step The Heaviside and unit step functions are identical: $$ H(t-c)=u(t-c)=u_c(t)=\begin{cases} 0 & t < c \\ 1 & t \geq c \end{cases} $$ Piecewise continuous functions can be manipulated into a single equation via the Heaviside function. For a Heaviside transform $\mathcal L\{u_c(t)g(t)\}$, if $g$ is defined on $[0,\infty)$, $c\geq 0$, and $\mathcal L\{g(t+c)\}$ exists for some $s>s_0$: $$ \mathcal L\{u_c(t)g(t)\}=e^{-sc}\mathcal L\{g(t+c)\},s>s_0 $$ Likewise, under the same conditions, shifting it twice restores it back to the original. $$ \mathcal L\{u_c(t)f(t-c)\}=e^{-sc}\mathcal L\{f\} $$ ### Convolution Convolution is a weird thingy that does weird things. $$(f*g)(t)=\int^t_0f(\tau)g(t-\tau)d\tau$$ It is commutative ($f*g=g*f$) and is useful in transforms: $$\mathcal L\{f*g\}=\mathcal L\{f\}\mathcal L\{g\}$$ !!! example To solve $4y''+y=g(t),y(0)=3, y'(0)=-7$: \begin{align*} 4\mathcal L\{y''\}+\mathcal L\{y\}&=\mathcal L\{g(t)\} \\ 4(s^2\mathcal L\{y\}-s\cdot y(0) - y'(0))+\mathcal L\{y\} &=\mathcal L\{g(t)\} \\ \mathcal L\{y\}(4s^2+1)-12s+28&=\mathcal L\{g(t)\} \\ \mathcal L\{y\}&=\frac{\mathcal L\{g(t)\}}{4s^2+1} + \frac{12s}{4s^2+1} - \frac{28}{4s^2+1} \\ y&=\mathcal L^{-1}\left\{\frac{1}{4s^2+1}\mathcal L\{g(t)\}\right\} + \mathcal L^{-1}\left\{3\frac{s}{s^2+\frac 1 4}\right\}-\mathcal L^{-1}\left\{7\frac{1}{s^2+\frac 1 4}\right\} \\ &= \mathcal L^{-1}\left\{\frac 1 2\mathcal L\left\{\sin\left(\tfrac 1 2 t\right)\right\}\mathcal L\{g(t)\} \right\}+3\cos\left(\tfrac 1 2 t\right)-14\sin\left(\tfrac 1 2t\right) \\ &=\frac 1 2\left(\sin\left(\tfrac 1 2 t\right)*g(t)\right)+3\cos\left(\tfrac 1 2 t\right)-14\sin\left(\tfrac 1 2t\right) \\ &=\frac 1 2\int^t_0\sin(\tfrac 1 2\tau)g(t-\tau)d\tau + 3\cos(\tfrac 1 2 t)-14\sin(\tfrac 1 2 t) \end{align*} ### Impulse The **impulse for duration $\epsilon$** is defined by the **dirac delta function**: $$ \delta_\epsilon(t)=\begin{cases} \frac 1\epsilon & \text{if }0\leq t\leq\epsilon \\ 0 & \text{else} \end{cases} $$ As $\epsilon\to 0, \delta_\epsilon(t)\to\infty$. Thus: $$ \delta(t-a)=\begin{cases} \infty & \text{if }t=a \\ 0 & \text{else} \end{cases} \\ \boxed{\int^\infty_0\delta(t-a)dt=1} $$ If a function is continuous, multiplying it by the impulse function is equivalent to turning it on at that particular point. For $a\geq 0$: $$\boxed{\int^\infty_0\delta(t-a)dt=g(a)}$$ Thus we also have: $$\mathcal L\{\delta (t-a)\}=e^{-as}\implies\mathcal L^{-1}\{1\}=\delta(t)$$ ## Heat flow The temperature of a tube from $x=0$ to $x=L$ can be represented by the following DE: $$\text{temp}=u(x,t)=\boxed{u_t=a^2u_{xx}},00$$ Two boundary conditions are requred to solve the problem for all $t>0$ — that at $t=0$ and at $x=0,x=L$. - $u(x,0)=f(x),0\leq x\leq L$ - e.g., $u(0,t)=u(L,t)=0,t>0$ ### Periodicity The **period** of a function is an increment that always returns the same value: $f(x+T)=f(x)$, and its **fundamental period** of a function is the smallest possible period. !!! example The fundamental period of $\sin x$ is $2\pi$, but any $2\pi K,k\in\mathbb N$ is a period. The fundamental periods of $\sin \omega x$ and $\cos\omega x$ are both $\frac{2\pi}{\omega}$. If functions $f$ and $g$ have a period $T$, then both $af+bg$ and $fg$ also must have period $T$. #### Manipulating polarity - even: $\int^L_{-L}f(x)dx=2\int^L_0f(x)dx$ - odd: $\int^L_{-L}f(x)dx=0$ - even × even = even - odd × odd = even - even × odd = odd ## Orthogonality $$\int^L_{-L}\cos(\frac{m\pi x}{L})\sin(\frac{n\pi x}{L})dx=0$$ $$ \int^L_{-L}\cos(\frac{m\pi x}{L})(\frac{n\pi x}{L})dx=\begin{cases} 2L & \text{if }m=n=0 \\ L & \text{if }m=n\neq 0 \\ 0 & \text{if }m\neq n \end{cases} $$ $$ \int^L_{-L}\sin(\frac{m\pi x}{L}\sin(\frac{n\pi x}{L})dx=\begin{cases} L & \text{if }m=n \\ 0 & \text{if }m\neq n \end{cases} $$ Functions are **orthogonal** on an interval when the integral of their product is zero, and a set of functions is **mutually orthogonal** if all functions in the set are orthogonal to each other. If a Fourier series converges to $f(x)$: $$f(x)=\frac{a_0}{2} + \sum^\infty_{n=1}\left(a_n\cos(\frac{n\pi x}{L})+b_n\sin(\frac{n\pi x}{L})\right)$$ The **Euler-Fourier** formulae must apply: $$ \boxed{a_n=\frac 1 L\int^L_{-L}f(x)\cos(\frac{n\pi x}{L})dx} \\ \\ \boxed{b_n=\frac 1 L\int^L_{-L}f(x)\sin(\frac{n\pi x}{L})dx} $$ ## Resources - [Laplace Table](/resources/ece/laplace.pdf)