The current across a diode is, where $I_s$ is a forced saturation current, $V$ is the voltage drop across it, and $V_T$ is the **thermal voltage** such that $V_T=\frac{kT}{q}$, where $T$ is the temperature, $k$ is the Boltzmann constant, and $q$ is the charge of an electron:
$$I=I_s\left(e^{V/V_T}-1\right)$$
!!! tip
- $V_T\approx\pu{25 mV}$ at 20°C
- $V_T\approx\pu{20 mV}$ at 25°C
A diode is open when current is flowing reverse the desired direction, resulting in zero current, until the voltage drop becomes so great that it reaches the **breakdown voltage** $V_B$. Otherwise, the above current formula is followed.
Diodes are commonly used in **rectifier circuits** — circuits that convert AC to DC.
By preventing negative voltage, a relatively constant positive DC voltage is obtained. The slight dip between each hill is known as **ripple** $\Delta V$.
A Zener diode is a calibrated diode with a known breakdown voltage, $V_B$. If the voltage across the diode would be greater than $V_B$, it is **capped at $V_B$.**
Solving for current for each element in a series returns a negative linear line and other non-linear lines.
- the linear line is the **load line**, which represents the possible solutions to the circuit when it is loaded
- Depending on the base current $I_s$, the diode or transistor will be **biased** toward one of the curves, and the voltage and current will settle on one of the intersections, or **bias points**.
In strictly DC, current passes the gate if the gate voltage is greater than the threshold voltage $V_G>V_t$. The difference between the two is known as the **overdrive voltage** $V_{ov}$:
$$V_{ov}=V_G-V_t$$
At a small $V_{DS}$, or in AC, the slope of $I_D$ to $V_{DS}$ is proportional to $V_G$. The **channel transconductance** $g_{DS}$ represents this slope, which is constant based on the **transconductance parameter** of the device.
$$\frac{I_D}{V_{DS}}=g_{DS}=k_nV_{ov}$$
Before the saturation region, the current grows exponentially:
As $V_{gs}$ is not necessarily zero, dependent sources must be left in when solving for output resistance, and so a small test source at the point of interest is required.
$V_{in}^+=-V_{in}^-=\frac{V_d}{2}$, so the current going down from both gates is equal $i_{gs1}=-i_{gs2}$. This means that node before $R_E$ is effectively ground, so the circuit can be split into two common source circuits.
A **parasitic capacitor** from the gate to the source of an NMOS limits the bandwidth (gain). These represent physical limitations of electrodes. At the output, the current through the capacitor can be neglected. At the input, the current through the capacitor dominates.