2023-01-09 08:23:07 -05:00
# MATH 119: Calculus 2
2023-01-10 11:38:11 -05:00
## Multivariable functions
2023-01-10 13:39:19 -05:00
!!! definition
- A **multivariable function** accepts more than one independent variable, e.g., $f(x, y)$.
The signature of multivariable functions is indicated in the form *[identifier]* : *[input type]* → *[return type]* . Where $n$ is the number of inputs:
$$f: \mathbb R^n \to \mathbb R$$
!!! example
The following function is in the form $f: \mathbb R^2\to\mathbb R$ and maps two variables into one called $z$ via function $f$.
$$(x,y)\longmapsto z=f(x,y)$$
2023-01-10 11:38:11 -05:00
### Sketching multivariable functions
2023-01-10 13:39:19 -05:00
!!! definition
- In a **scalar field** , each point in space is assigned a number. For example, topography or altitude maps are scalar fields.
- A **level curve** is a slice of a three-dimensional graph by setting to a general variable $f(x, y)=k$. It is effectively a series of contour plots set in a three-dimensional plane.
- A **contour plot** is a graph obtained by substituting a constant for $k$ in a level curve.
2023-01-10 14:02:44 -05:00
Please see [level set ](https://en.wikipedia.org/wiki/Level_set ) and [contour line ](https://en.wikipedia.org/wiki/Contour_line ) for example images.
2023-01-10 13:39:19 -05:00
2023-01-10 16:04:33 -05:00
In order to create a sketch for a multivariable function, this site does not have enough pictures so you should watch a YouTube video.
!!! example
For the function $z=x^2+y^2$:
For each $x, y, z$:
- Set $k$ equal to the variable and substitute it into the equation
- Sketch a two-dimensional graph with constant values of $k$ (e.g., $k=-2, -1, 0, 1, 2$) using the other two variables as axes
Combine the three **contour plots** in a three-dimensional plane to form the full sketch.
2023-01-11 15:39:46 -05:00
A **hyperbola** is formed when the difference between two points is constant. Where $r$ is the x-intercept:
$$x^2-y^2=r^2$$
< img src = "/resources/images/hyperbola.svg" width = 600 / >
If $r^2$ is negative, the hyperbola is is bounded by functions of $x$, instead.
## Limits of two-variable functions
A function is continuous at $(x, y)$ if and only if all possible lines through $(x, y)$ have the same limit. Or, where $L$ is a constant:
$$\text{continuous}\iff \lim_{(x, y)\to(x_0, y_0)}f(x, y) = L$$
In practice, this means that if any two paths result in different limits, the limit is undefined. Substituting $x|y=0$ or $y=mx$ or $x=my$ are common solutions.
!!! example
For the function $\lim_{(x, y)\to (0,0)}\frac{x^2}{x^2+y^2}$:
Along $y=0$:
2023-01-15 17:14:01 -05:00
$$\lim_{(x,0)\to(0, 0)} ... = 1$$
2023-01-11 15:39:46 -05:00
Along $x=0$:
$$\lim_{(0, y)\to(0, 0)} ... = 0$$
Therefore the limit does not exist.
2023-01-15 17:32:31 -05:00
## Partial derivatives
Partial derivatives have multiple different symbols that all mean the same thing:
$$\frac{\partial f}{\partial x}=\partial_x f=f_x$$
For two-input-variable equations, setting one of the input variables to a constant will return the derivative of the slice at that constant.
By definition, the **partial** derivative of $f$ with respect to $x$ (in the x-direction) at point $(a, B)$ is:
$$\frac{\partial f}{\partial x}(a, B)=\lim_{h\to 0}\frac{f(a+h, B)-f(a, B)}{h}$$
Effectively:
- if finding $f_x$, $y$ should be treated as constant.
- if finding $f_y$, $x$ should be treated as constant.
!!! example
With the function $f(x,y)=x^2\sqrt{y}+\cos\pi y$:
\begin{align*}
f_x(1,1)& =\lim_{h\to 0}\frac{f(1+h,1)-f(1,1)} h \\
\tag*{$f(1,1)=1+\cos\pi=0$}& =\lim_{h\to 0}\frac{(1+h)^2-1} h \\
& =\lim_{h\to 0}\frac{h^2+2h} h \\
& = 2 \\
\end{align*}
### Higher order derivatives
!!! definition
- **wrt.** is short for "with respect to".
$$\frac{\partial^2f}{\partial x^2}=\partial_{xx}f=f_{xx}$$
Derivatives of different variables can be combined:
$$f_{xy}=\frac{\partial}{\partial y}\frac{\partial f}{\partial x}=\frac{\partial^2 f}{\partial xy}$$
The order of the variables matter: $f_{xy}$ is the derivative of f wrt. x *and then* wrt. y.
**Clairaut's theorem** states that if $f_x, f_y$, and $f_{xy}$ all exist near $(a, b)$ and $f_{yx}$ is continuous **at** $(a,b)$, $f_{yx}(a,b)=f_{x,y}(a,b)$ and exists.
!!! warning
In multivariable calculus, **differentiability does not imply continuity** .
2023-01-16 21:39:40 -05:00
### Linear approximations
A **tangent plane** represents all possible partial derivatives at a point of a function.
For two-dimensional functions, the differential could be used to extrapolate points ahead or behind a point on a curve.
$$
\Delta f=f'(a)\Delta d \\
\boxed{y=f(a)+f'(a)(x-a)}
$$
The equations of the two unit direction vectors in $x$ and $y$ can be used to find the normal of the tangent plane:
$$
\vec n=\vec d_1\times\vec d_2 \\
\begin{bmatrix}-f_x(a,b) \\ -f_y(a,b) \\ 1\end{bmatrix} = \begin{bmatrix}1\\0\\f_x(a,b)\end{bmatrix}
\begin{bmatrix}0\\1\\f_y(a,b)\end{bmatrix}
$$
Therefore, the general expression of a plane is equivalent to:
$$
z=C+A(x-a)+B(x-b) \\
\boxed{z=f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(y-b)}
$$
??? tip "Proof"
The general formula for a plane is $c_1(x-a)+c_2(y-b)+c_3(z-c)=0$.
If $y$ is constant such that $y=b$:
$$z=C+A(x-a)$$
which must represent in the x-direction as an equation in the form $y=b+mx$. It follows that $A=f_x(a,b)$. A similar concept exists for $f_y(a,b)$.
If both $x=a$ and $y=b$ are constant:
$$z=C$$
where $C$ must be the $z$-point.
Usually, functions can be approximated via the **tangent at $x=a$.**
$$f(x)\simeq L(x)$$
!!! warning
Approximations are less accurate the stronger the curve and the farther the point is away from $f(a,b)$. A greater $|f''(a)|$ indicates a stronger curve.
!!! example
Given the function $f(x,y)=\ln(\sqrt[3]{x}+\sqrt[4]{y}-1)$, $f(1.03, 0.98)$ can be linearly approximated.
$$
L(x=1.03, y=0.98)=f(1,1)=f_x(1,1)(x-1)+f_y(1,1)(y-1) \\
f(1.03,0.98)\simeq L(1.03,0.98)=0.005
$$
2023-01-17 21:30:02 -05:00
### Differentials
Linear approximations can be used with the help of differentials. Please see [MATH 117#Differentials ](/1a/math117/#differentials ) for more information.
$\Delta f$ can be assumed to be equivalent to $df$.
$$\Delta f=f_x(a,b)\Delta x+f_y(a,b)\Delta y$$
Alternatively, it can be expanded in Leibniz notation in the form of a **total differential** :
$$df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy$$
??? tip "Proof"
The general formula for a plane in three dimensions can be expressed as a tangent plane if the differential is small enough:
$$f(x,y)=f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(x-b)$$
As $\Delta f=f(x,y)-f(a,b)$, $\Delta x=x-a$, and $\Delta y=y-b$, it can be assumed that $\Delta x=dx,\Delta y=dy, \Delta f\simeq df$.
$$\boxed{\Delta f\simeq df=f_x(a,b)dx+f_y(a,b)dy}$$
### Related rates
Please see [SL Math - Analysis and Approaches 1 ](/g11/mhf4u7/#related-rates ) for more information.
!!! example
For the gas law $pV=nRT$, if $T$ increases by 1% and $V$ increases by 3%:
\begin{align*}
pV& =nRT \\
\ln p& =\ln nR + \ln T - \ln V \\
\tag{multiply both sides by $d$}\frac{d}{dp}\ln p(dp)& =0 + \frac{d}{dT}\ln T(dt)-\frac{d}{dV}\ln V(dV) \\
\frac{dp}{p} & =\frac{dT}{T}-\frac{dV}{V} \\
& =0.01-0.03 \\
& =-2\%
\end{align*}
### Parametric curves
Because of the existence of the parameter $t$, these expressions have some advantages over scalar equations:
- the direction of $x$ and $y$ can be determined as $t$ increases, and
- the rate of change of $x$ and $y$ relative to $t$ as well as each other is clearer
$$
\begin{align*}
f(x,y,z)& =\begin{bmatrix}x(t) \\ y(t) \\ z(t)\end{bmatrix} \\
& =(x(t), y(t), z(t))
\end{align*}
$$
2023-01-23 11:10:23 -05:00
The **derivative** of a parametric function is equal to the vector sum of the derivative of its components:
$$\frac{df}{dt}=\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2+\left(\frac{dz}{dt}\right)^2}$$
Sometimes, the **chain rule for multivariable functions** creates a new branch in a tree for each independent variable.
For two-variable functions, if $z=f(x,y)$:
$$\frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}$$
Sample tree diagram:
< img src = "/resources/images/two-var-tree.jpg" width = 300 > (Source: LibreTexts)< / img >
!!! example
This can be extended for multiple functions — for the function $z=f(x,y)$, where $x=g(u,v)$ and $y=h(u,v)$:
< img src = "/resources/images/many-var-tree.jpg" width = 300 > (Source: LibreTexts)< / img >
Determining the partial derivatives with respect to $u$ or $v$ can be done by only following the branches that end with those terms.
$$
\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial u} \\
$$
!!! warning
If the function only depends on one variable, $\frac{d}{dx}$ is used. Multivariable functions must use $\frac{\partial}{\partial x}$ to treat the other variables as constant.
2023-01-23 20:54:00 -05:00
### Gradient vectors
The **gradient vector** is the vector of the partial derivatives of a function with respect to its independent variables. For $f(x,y)$:
$$\nabla f=\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right)$$
This allows for the the following replacements to appear more like single-variable calculus. Where $\vec r=(x,y)$ is a desired point, $\vec a=(a,b)$ is the initial point, and all vector multiplications are dot products:
Linear approximations are simplified to:
$$f(\vec r)=f(\vec a)+\nabla f(\vec a)\bullet(\vec r-\vec a)$$
The chain rule is also simplified to:
$$\frac{dz}{dt}=\nabla f(\vec r(t))\bullet\vec r'(t)$$
A **directional derivative** is any of the infinite derivatives at a certain point with the length of a unit vector. Specifically, in the unit vector direction $\vec u$ at point $\vec a=(a,b)$:
$$D_{\vec u}f(a_b)=\lim_{h\to 0}\frac{f(\vec a+h\vec u)\bullet f(\vec a)}{h}$$
This reduces down by taking only $h$ as variable to:
$$D_{\vec u}f(a,b)=\nabla f(a,b)\bullet\vec u$$
Cartesian and polar coordinates can be easily converted between:
- $x=r\sin\theta\cos\phi$
- $y=r\sin\theta\sin\phi$
- $z=r\cos\theta$
2023-01-24 18:39:17 -05:00
## Optimisation
**Local maxima / minima** exist at points where all points in a disk-like area around it do not pass that point. Practically, they must have $\nabla f=0$.
**Critical points** are any point at which $\nabla f=0|undef$. A critical point that is not a local extrema is a **saddle point** .
Local maxima tend to be **concave down** while local minima are **concave up** . This can be determined via the second derivative test. For the critical point $P_0$ of $f(x,y)$:
1. Calculate $D(x,y)= f_{xx}f_{yy}-(f_{xy})^2$
2. If it greater than zero, the point is an extremum
a. If $f_{xx}(P_0)< 0 $ , the point is a maximum — otherwise it is a minimum
3. If it is less than zero, it is a saddle point — otherwise the test is inconclusive and you must use your eyeballs
2023-01-28 19:21:43 -05:00
### Optimisation with constraints
If there is a limitation in optimising for $f(x,y)$ in the form $g(x,y)=K$, new critical points can be found by setting them equal to each other, where $\lambda$ is the **Lagrange multiplier** that determines the rate of increase of $f$ with respect to $g$:
$$\nabla f = \lambda\nabla g, g(x,y)=K$$
2023-01-31 21:12:12 -05:00
The largest/smallest values of $f(x,y)$ from the critical points return the maxima/minima. If possible, $\nabla g=\vec 0, g(x,y)=K$ should also be tested **afterward** .
2023-01-28 19:21:43 -05:00
!!! example
If $A(x,y)=xy$, $g(x,y)=K: x+2y=400$, and $A(x,y)$ should be maximised:
\begin{align*}
2023-01-31 21:12:12 -05:00
\nabla f & = \left< y , x \right > \\
\nabla g & = \left< 1 , 2 \right > \\
\left< y , x \right > & = \lambda \left< 1 , 2 \right > \\
2023-01-31 21:12:58 -05:00
& \begin{cases}
2023-01-28 19:21:43 -05:00
y & = \lambda \\
x & = 2\lambda \\
x + 2y & = 400 \\
\end{cases}
\\
\\
2023-01-31 21:12:58 -05:00
\therefore y& =100,x=200,A=20\ 000
2023-01-28 19:21:43 -05:00
\end{align*}
2023-01-31 21:12:12 -05:00
??? example
If $f(x,y)=y^2-x^2$ and the constraint $\frac{x^2}{4} + y^2=1$ must be satisfied:
\begin{align*}
\nabla f & =\left< -2x , 2y \right > \\
\nabla g & =\left< \frac { 1 }{ 2 } x , 2y \right > \\
\tag{$\left< 0 , 0 \right > $ does not satisfy constraints} \left< -2x , 2y \right > & =\lambda\left< - \frac 1 2 x , 2y \right > \\
& \begin{cases}
-2x & = \frac 1 2\lambda x \\
2y & = \lambda2y \\
\frac{x^2}{4} + y^2& = 1
\end{cases} \\
\\
2y(1-\lambda)& =0\implies y=0,\lambda=1 \\
& \begin{cases}
y=0& \implies x=\pm 2\implies\left< \pm2 , 0 \right > \\
\lambda=1& \implies \left< 0 , \pm 1 \right >
\end{cases}
\\
\tag{by substitution} \max& =(2,0), (-2, 0) \\
\min& =(0, -1), (0, 1)
\end{align*}
??? example
If $f(x, y)=x^2+xy+y^2$ and the constraint $x^2+y^2=4$ must be satisfied:
\begin{align*}
\tag{domain: bounded at $-2\leq x\leq 2$}y=\pm\sqrt{4-x^2} \\
f(x,\pm\sqrt{4-x^2}) & = x^2+(\pm\sqrt{4-x^2})x + 4-x^2 \\
\frac{df}{dx} & =\pm(\sqrt{4-x^2}-\frac{1}{2}\frac{1}{\sqrt{4-x^2}}2x(x)) \\
\tag{$f'(x)=0$} 0 & =4-x^2-x^2 \\
x & =\pm\sqrt{2} \\
\\
2+y^2 & = 4 \\
y & =\pm\sqrt{2} \\
\therefore f(x,y) & = 2, 6
\end{align*}
Alternatively, trigonometric substitution may be used to solve the system parametrically.
\begin{align*}
x^2+y^2& =4\implies & x=2\cos t \\
& & y=2\sin t \\
\therefore f(x,y) & = 4+2\sin(2t),0\leq t\leq 2\pi \\
\tag{include endpoints $0,2\pi$}t & = \frac\pi 4,\frac{3\pi}{4},\frac{5\pi}{4} \\
\end{align*}
!!! warning
Terms cannot be directly cancelled out in case they are zero.
2023-01-28 19:21:43 -05:00
This applies equally to higher dimensions and constraints by adding a new term for each constraint. Given $f(x,y,z)$ with constraints $g(x,y,z)=K$ and $h(x,y,z)=M$:
$$\nabla f=\lambda_1\nabla g + \lambda_2\nabla h$$
### Absolute extrema
- If end points exist, those should be added
- If no endpoints exist and the limits go to $\pm\infty$, there are no absolute extrema
2023-02-04 18:20:48 -05:00
## Double integration
In a nutshell, double integration is done by taking infinitely small lines then finding the area under those lines to form a volume.
For a surface formed by vectors $[a,b]$ and $[c,d]$:
$$[a,b]\times[c,d]=R=\{(x,y)|a\leq x\leq b,c\leq y\leq d\}$$
If the function is continuous and bounds do not depend on variables, the order of integration doesn't matter.
$$\boxed{\int^d_c\int^b_af(x,y)dxdy}$$
!!! example
For $f(x,y)=x^2y$ and $R=[0,3]\times[1,2]$:
\begin{align*}
V& =\int^2_1\int^3_0x^2ydxdy \\
& =\int^2_1\left[\frac 1 3 3^3y\right]dy \\
& =\frac{9}{2}y^2\biggr|^2_1 \\
& =\frac 9 2 (4)-\frac 9 2 \\
& =\frac{27}{2}
\end{align*}
If the function is the product of two functions of separate variables, i.e., if $f(x,y)=g(x)\cdot h(y)$:
$$\int^b_a\int^d_cg(x)h(y)dxdy=\left(\int^b_ah(y)dy\right)\left(\int^d_cg(x)dx\right)$$
### Volume betweeen two functions
The result of the bound variable should be integrated first. For functions of $y$:
$$\int^b_a\left(\int^{g(x)}_{h(x)}f(x,y)dy\right)dx$$
Functions can also be replaced to be bounded by the other if necessary.
!!! example
For $f(x,y)$ bounded by $y=x$ and $y=\sqrt x$:
$$\int^1_0\int^{\sqrt x}_xf(x,y)dydx = \int^1_0\left(\int^y_{y^2}f(x,y)dx\right)dy$$
??? example
For $f(x,y)=xy$ bounded by $x=2$, $y=0$, and $y=2x$:
\begin{align*}
\int^2_0\int^{2x}_0xy\ dydx& =\int^2_0x\left(\frac 1 2(2x)^2\right)dx \\
& =\int^2_02x^3dx \\
& =\frac 1 4 x^4(2)\biggr|^2_0 \\
& = 8
\end{align*}
2023-02-07 11:19:15 -05:00
### Double polar integrals
The differential elements can be directly replaced:
$$dA=dxdy=\rho d\rho d\phi$$
In general, the radius should be the inner integral, and functions converted from Cartesian to polar forms.
$$\int^{\phi_2}_{\phi_1}\int^{\rho_2}_{\rho_1}f(\rho\cos\phi,\rho\sin\phi)\rho d\rho d\phi$$
2023-02-08 11:17:48 -05:00
### Change of variables
The **Jacobian** is the proportion of change in the differentials between different coordinate systems.
$$
\frac{\partial(x,y)}{\partial(u, v)}=\det\begin{bmatrix}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{bmatrix}
$$
The Jacobian can be treated as a fraction — it may be easier to determine the reciprocal of the Jacobian and then reciprocal it again.
When converting between two systems, the absolute value of the Jacobian should be incorporated.
$$dA=\left|\frac{\partial(x,y)}{\partial(u,v)}\right|du\ dv$$
!!! example
The Jacobian of the polar coordinate system relative to the Cartesian coordinate system is $\rho$. Therefore, $dA=\rho\ d\rho\ d\phi$.
If $x=x(u,v)$, $y=y(u,v)$, and $\partial(x,y)/\partial(u,v)\neq 0$ in the domain of $u$ and $v$ $D_{uv}$:
$$\iint_{D_{xy}}f(x,y)dA = \iint_{D_{uv}}f(x(u,v),y(u,v))\left|\frac{\partial(x,y)}{\partial(u,v)}\right|du\ dv$$
1. Pick a good transformation that simplifies the domain and/or the function.
2. Compute the Jacobian
3. Determine bounds (domain)
4. Integrate with the formula
If the Jacobian contains $x$ and/or $y$ terms:
- they can be substituted into the integral directly, praying that the terms all cancel out
- or $x$ and $y$ can be written in terms of $u$ and $v$ and then all substituted
2023-02-11 16:14:02 -05:00
!!! example
For the volume within $x^2y^2\sqrt{1-x^3-y^3}$ bounded by $x=0,y=0,x^3+y^3=1$:
By graphical inspection, the bounds can be determined to be $x=0,y=0, y^3=x^3-1,x=1$.
Let $u=x^3,du=3x^2dx$. Let $v=y^3,dv=3y^2dy$. The bounds change to $0\leq u\leq 1,0\leq v\leq 1-u$.
\begin{align*}
\int^1_0\int^{1-u}_0\frac 1 9\sqrt{1-u-v}\ dudv & = \int^1_0\frac{2}{27}(1-v-u)^{3/2}\biggr|^{1-u}_0du \\
& = \int^1_0\frac{2}{27}(1-u)^{3/2}du \\
& = \frac{4}{135}(1-u)^{5/2}\biggr|^1_0 \\
& = \frac{4}{135}
\end{align*}
2023-02-08 11:17:48 -05:00
### Applications of multiple integrals
The area enclosed within bounds $R$ is the volume with a height of 1.
$$A_R=\iint_R 1\ dA$$
2023-02-11 16:14:02 -05:00
!!! example
For the area between $y=(x-1)^2$ and $y=5-(x-2)^2$:
POI: $x^2-3x=0,\therefore x=0, 3$
\begin{align*}
\int^3_0\int^{5-(x-2)^2}_{(x-1)^2}dydx & =\int^3_0(5-(x-2)^2-(x-1)^2)dx \\
& =\int^3_0(-2x^2+6x)dx \\
& =-\frac 2 3x^3+3x^2\biggr|^3_0 \\
& =9
\end{align*}
!!! example
For the area of $\left(\frac x a\right)^2+\left(\frac y b\right)^2=1$ in the region $a,b>0$:
**For ellipses of this form, a direct substitution to $a\rho\cos\phi$ and $b\rho\cos\phi$ is fastest.**
Let $u=\frac x a$ and $v=\frac y b$.
$$
\frac{\partial(x,y)}{\partial(u,v)}=\det\begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix}=ab
$$
Thus $A=\iint_Rab\ du\ dv$.
Let $u=\rho\cos\phi,v=\rho\sin\phi$. Radius is 1 by inspection.
\begin{align*}
A& =\int^{2\pi}_0\int^1_0ab\rho\ d\rho\ d\phi \\
& =\int^{2\pi}\frac 1 2 ab\ d\phi \\
& =\frac 1 2 ab\phi\biggr|^{2\pi}_0 \\
& =\pi ab
\end{align*}
2023-02-08 11:17:48 -05:00
The average value of the function $f(x,y)$ over a region $R$, where $A_R$ is the area of the region:
$$\overline{f}_R=\frac{1}{A_R}\iint_Rf(x,y) dA$$
2023-02-11 16:14:02 -05:00
!!! example
The average value of $x^2+y^2$ over $x=0,x=1, y=x$:
\begin{align*}
\text{avg}& =\frac 1 A\int^1_0\int^x_0(x^2+y^2)dydx \\
& =2\int^1_0(x^2y+\frac 1 3y^3)\biggr|^x_0dx \\
& =2\int^1_0\frac 4 3 x^3dx \\
& =\frac 2 3 x^4 \biggr|^1_0 \\
& =\frac 2 3
\end{align*}
2023-02-08 11:17:48 -05:00
The total "amount" of within a region, if $f(x,y)$ describes the density at point $(x,y)$:
$$\iint_R f(x,y)dA$$
2023-02-11 16:14:02 -05:00
!!! example
The total of $x^2+y^2$ with density $\sigma=\sqrt{1-x^2-y^2}$:
Let $x^2=\rho\cos\phi,y^2=\rho\sin\phi$. Thus $\sigma=\sqrt{1-\rho^2}$.
\begin{align*}
M& =\int^{2\pi}_0\int^1_0\sqrt{1-\rho^2}\rho\ d\rho\ d\phi \\
& =\int^{2\pi}_0d\phi\int^1_0\sqrt{1-\rho^2}\ d\rho\ d\phi \\
\end{align*}
Let $u=1-\rho^2$. Thus $du=-2\rho\ d\rho$.
\begin{align*}
m& =2\pi\int^1_0-\frac 1 2\sqrt u du \\
& =\frac 2 3u^{3/2}du\biggr|^1_0 \\
& =\frac 2 3\pi
\end{align*}
2023-02-17 11:05:06 -05:00
## Triple integration
Much like double integrals:
The **volume** within bounds $E$ is the integral of 1:
$$V=\iiint_E1dV$$
The **average value** within a volume is:
$$\overline f_E=\frac 1 V\iiint_Ef(x,y,z)dV$$
!!! example
For the volume within $x+y+z=1$ and $2x+2y+z=2,x,y,z\geq 0$:
The points intersect the axes and each other to create the bounds $0\leq x\leq 1,0\leq y\leq 1-x,1-x-y\leq z\leq 2-2x-2y$.
$$\int^1_0\int^{1-x}_0\int^{2-2x-2y}_{1-x-y}1dz\ dy\ dx =\frac 1 6$$
The average value is:
$$6\iiint_Ez\ dV=\frac 3 4$$
The **total quantity** if $f$ represents density is:
$$T=\iiint_Ef(x,y,z)dV$$