math: Add cross product

This commit is contained in:
eggy 2021-05-11 17:42:50 -04:00
parent e6e62e3eee
commit 03888187e4

View File

@ -388,10 +388,10 @@ $$\vec{u}\bullet\vec{v}=|\vec{u}||\vec{v}|\cos\theta$$
Much like regular multiplication, dot products are: Much like regular multiplication, dot products are:
- communtative $\vec{u}\bullet\vec{v}=\vec{v}\bullet\vec{u}$ - communtative: $\vec{u}\bullet\vec{v}=\vec{v}\bullet\vec{u}$
- distributive over vectors $\vec{u}\bullet(\vec{v}+\vec{w})=\vec{u}\bullet\vec{v}+\vec{u}\bullet\vec{w}$ - distributive over vectors: $\vec{u}\bullet(\vec{v}+\vec{w})=\vec{u}\bullet\vec{v}+\vec{u}\bullet\vec{w}$
- associative over scalars $(m\vec{u})\bullet(n\vec{v})=mn(\vec{u}\bullet\vec{v})$ - associative over scalars: $(m\vec{u})\bullet(n\vec{v})=mn(\vec{u}\bullet\vec{v})$
- $m(\vec{u}\bullet\vec{v})=(mu)\bullet\vec{v}=(mv)\bullet\vec{u}$ - $m(\vec{u}\bullet\vec{v})=(m\vec{u})\bullet\vec{v}=(mv)\bullet\vec{u}$
When working with algebraic vectors, their dot products are equal to the products of their components. When working with algebraic vectors, their dot products are equal to the products of their components.
$$\vec{u}\bullet\vec{v}=u_xv_x+u_yv_y$$ $$\vec{u}\bullet\vec{v}=u_xv_x+u_yv_y$$
@ -481,6 +481,52 @@ $$
Vector projections are applied in work equations — see [SL Physics 1](/sph3u7/#work) for more information. Vector projections are applied in work equations — see [SL Physics 1](/sph3u7/#work) for more information.
### Cross product
The cross product or **vector product** is a vector that is perpendicular of two vectors that are not colinear. Where $\vec{u}_1,\vec{u}_2,\vec{3}$ represent the x, y, and z coordinates of the position vector $\vec{u}$, respectively:
$$
\begin{align*}
\vec{u}\times\vec{v}&=
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
\vec{u}_1 & \vec{u}_2 & \vec{u}_3 \\
\vec{v}_1 & \vec{v}_2 & \vec{v}_3
\end{vmatrix} \\
\\
&=\hat{j}\begin{vmatrix}
\vec{u}_1 & \vec{u}_3 \\
\vec{v}_1 & \vec{v}_3
\end{vmatrix}
-\hat{i}\begin{vmatrix}
\vec{u}_2 & \vec{u}_3 \\
\vec{v}_2 & \vec{v}_3
\end{vmatrix}
+\hat{k}\begin{vmatrix}
\vec{u}_1 & \vec{u}_2 \\
\vec{v}_1 & \vec{v}_2
\end{vmatrix} \\
\\
&=[\vec{u}_2\vec{v}_3-\vec{u}_3\vec{v}_2,\vec{u}_3\vec{v}_1-\vec{u}_1\vec{v}_3,\vec{u}_1\vec{v}_2-\vec{u}_2\vec{v}_1]
\end{align*}
$$
Cross products are:
- anti-communtative: $\vec{u}\times\vec{v}=-(\vec{u}\times\vec{v})$
- distributive: $\vec{u}\times(\vec{u}+\vec{w})=\vec{u}\times\vec{v}+\vec{u}\times\vec{w}$
- associative over scalars: $m(\vec{u}\times\vec{v})=(m\vec{u})\times\vec{v}=(m\vec{v})\times\vec{u}$
The **magnitude** of a cross product is opposite that of the dot product. Where $\theta$ is the smaller angle between the two vectors ($0\leq\theta\leq180^\circ$):
$$|\vec{u}\times\vec{v}|=|\vec{u}||\vec{v}|\sin\theta$$
This is also equal to the area of a parallelogram enclosed by the vectors — where one is the base and the other is the adjacent side.
To determine the **direction** of a cross product, the right-hand rule can be used. Spreading the fingers out:
- the thumb is the direction of the first vector
- the index finger is the direction of the second vector
- the palm faces the direction of the cross product
## Resources ## Resources
- [IB Math Analysis and Approaches Syllabus](/resources/g11/ib-math-syllabus.pdf) - [IB Math Analysis and Approaches Syllabus](/resources/g11/ib-math-syllabus.pdf)