math: Add cross product

This commit is contained in:
eggy 2021-05-11 17:42:50 -04:00
parent e6e62e3eee
commit 03888187e4

View File

@ -388,10 +388,10 @@ $$\vec{u}\bullet\vec{v}=|\vec{u}||\vec{v}|\cos\theta$$
Much like regular multiplication, dot products are:
- communtative $\vec{u}\bullet\vec{v}=\vec{v}\bullet\vec{u}$
- distributive over vectors $\vec{u}\bullet(\vec{v}+\vec{w})=\vec{u}\bullet\vec{v}+\vec{u}\bullet\vec{w}$
- associative over scalars $(m\vec{u})\bullet(n\vec{v})=mn(\vec{u}\bullet\vec{v})$
- $m(\vec{u}\bullet\vec{v})=(mu)\bullet\vec{v}=(mv)\bullet\vec{u}$
- communtative: $\vec{u}\bullet\vec{v}=\vec{v}\bullet\vec{u}$
- distributive over vectors: $\vec{u}\bullet(\vec{v}+\vec{w})=\vec{u}\bullet\vec{v}+\vec{u}\bullet\vec{w}$
- associative over scalars: $(m\vec{u})\bullet(n\vec{v})=mn(\vec{u}\bullet\vec{v})$
- $m(\vec{u}\bullet\vec{v})=(m\vec{u})\bullet\vec{v}=(mv)\bullet\vec{u}$
When working with algebraic vectors, their dot products are equal to the products of their components.
$$\vec{u}\bullet\vec{v}=u_xv_x+u_yv_y$$
@ -481,6 +481,52 @@ $$
Vector projections are applied in work equations — see [SL Physics 1](/sph3u7/#work) for more information.
### Cross product
The cross product or **vector product** is a vector that is perpendicular of two vectors that are not colinear. Where $\vec{u}_1,\vec{u}_2,\vec{3}$ represent the x, y, and z coordinates of the position vector $\vec{u}$, respectively:
$$
\begin{align*}
\vec{u}\times\vec{v}&=
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
\vec{u}_1 & \vec{u}_2 & \vec{u}_3 \\
\vec{v}_1 & \vec{v}_2 & \vec{v}_3
\end{vmatrix} \\
\\
&=\hat{j}\begin{vmatrix}
\vec{u}_1 & \vec{u}_3 \\
\vec{v}_1 & \vec{v}_3
\end{vmatrix}
-\hat{i}\begin{vmatrix}
\vec{u}_2 & \vec{u}_3 \\
\vec{v}_2 & \vec{v}_3
\end{vmatrix}
+\hat{k}\begin{vmatrix}
\vec{u}_1 & \vec{u}_2 \\
\vec{v}_1 & \vec{v}_2
\end{vmatrix} \\
\\
&=[\vec{u}_2\vec{v}_3-\vec{u}_3\vec{v}_2,\vec{u}_3\vec{v}_1-\vec{u}_1\vec{v}_3,\vec{u}_1\vec{v}_2-\vec{u}_2\vec{v}_1]
\end{align*}
$$
Cross products are:
- anti-communtative: $\vec{u}\times\vec{v}=-(\vec{u}\times\vec{v})$
- distributive: $\vec{u}\times(\vec{u}+\vec{w})=\vec{u}\times\vec{v}+\vec{u}\times\vec{w}$
- associative over scalars: $m(\vec{u}\times\vec{v})=(m\vec{u})\times\vec{v}=(m\vec{v})\times\vec{u}$
The **magnitude** of a cross product is opposite that of the dot product. Where $\theta$ is the smaller angle between the two vectors ($0\leq\theta\leq180^\circ$):
$$|\vec{u}\times\vec{v}|=|\vec{u}||\vec{v}|\sin\theta$$
This is also equal to the area of a parallelogram enclosed by the vectors — where one is the base and the other is the adjacent side.
To determine the **direction** of a cross product, the right-hand rule can be used. Spreading the fingers out:
- the thumb is the direction of the first vector
- the index finger is the direction of the second vector
- the palm faces the direction of the cross product
## Resources
- [IB Math Analysis and Approaches Syllabus](/resources/g11/ib-math-syllabus.pdf)