ece205: add more complex fouriers
This commit is contained in:
parent
9e3e94605e
commit
0738b692fc
@ -490,6 +490,25 @@ To convert it to a real Fouier series:
|
|||||||
\therefore f(x)&=\sum^\infty_{\substack{n=-\infty \\ n\neq0}}\frac{(-1)^ni}{n\pi}e^{in\pi x}
|
\therefore f(x)&=\sum^\infty_{\substack{n=-\infty \\ n\neq0}}\frac{(-1)^ni}{n\pi}e^{in\pi x}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
The Fourier coefficients $c_n$ map to the amplitude spectrum $|c_n|$. **Parseval's theorem** maps the frequency domain ($\{c_n\}$) to and from the time domain ($f(t)$):
|
||||||
|
|
||||||
|
If a 2L-periodic function $f(t)$ has a complex Fourier series $f(t)=\sum^\infty_{n=-\infty}c_ne^{\frac{in\pi x}{L}}$:
|
||||||
|
|
||||||
|
$$\frac{1}{2L}\int^L_{-L}\underbrace{[f(t)]^2}_\text{time domain}dt=\sum^\infty_{n=-\infty}\underbrace{|c_n|^2}_\text{time domain}$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
For the Sawtooth function, $f(t)=t, -1 < t < 1, f(t+2)=f(t)$:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
f(x)&=\sum^\infty_{\substack{n=-\infty \\ n\neq 0}}\frac{ni}{n\pi}e^{in\pi t}+0 \\
|
||||||
|
\frac 1 2\int^1_{-1}t^2dt&=\sum^\infty_{\substack{n=-\infty \\ n\neq 0}}\left|\frac{(-1)^ni}{n\pi}\right|^2+|0|^2 \\
|
||||||
|
\tag{$\left|\frac{(-1)^ni}{n\pi}\right|=\frac{1}{n\pi}$}\frac 1 3 &=\sum^\infty_{\substack{n=-\infty \\ n\neq 0}}\left(\frac{1}{n\pi}\right)^2 \\
|
||||||
|
&=\sum^{-1}_{n=-\infty}\left(\frac{1}{n\pi}\right)^2+\sum^\infty_{n=1}\left(\frac{1}{n\pi}\right)^2 \\
|
||||||
|
\tag{$\frac 1 n^2$ sign doesn't matter}&=2\sum^\infty_{n=1}\frac{1}{n^2\pi^2} \\
|
||||||
|
\frac 1 3 &=\frac{2}{\pi^2}\sum^\infty_{n=1}\frac{1}{n^2} \\
|
||||||
|
\frac{\pi^2}{6}&=\sum^\infty_{n=1}\frac{1}{n^2}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
## Resources
|
## Resources
|
||||||
|
|
||||||
- [Laplace Table](/resources/ece/laplace.pdf)
|
- [Laplace Table](/resources/ece/laplace.pdf)
|
||||||
|
Loading…
Reference in New Issue
Block a user