math117: add up to pfd
This commit is contained in:
parent
2fb1de682d
commit
0d5aea1189
@ -43,7 +43,7 @@ If a function is not invertible, restricting the domain may allow a **partial in
|
|||||||
By restricting the domain to $[0,\inf]$, the **multivalued inverse function** $y=\pm\sqrt{x}$ is reduced to just the partial inverse $y=\sqrt{x}$.
|
By restricting the domain to $[0,\inf]$, the **multivalued inverse function** $y=\pm\sqrt{x}$ is reduced to just the partial inverse $y=\sqrt{x}$.
|
||||||
|
|
||||||
## Symmetry
|
## Symmetry
|
||||||
|
78u7u887878
|
||||||
An **even function** satisfies the property that $f(x)=f(-x)$, indicating that it is unchanged by a reflection across the y-axis.
|
An **even function** satisfies the property that $f(x)=f(-x)$, indicating that it is unchanged by a reflection across the y-axis.
|
||||||
|
|
||||||
An **odd function** satisfies the property that $-f(x)=f(-x)$, indicating that it is unchanged by a 180° rotation about the origin.
|
An **odd function** satisfies the property that $-f(x)=f(-x)$, indicating that it is unchanged by a 180° rotation about the origin.
|
||||||
@ -70,3 +70,133 @@ $$
|
|||||||
\sinh x = \frac{1}{2}(e^x - e^{-x})
|
\sinh x = \frac{1}{2}(e^x - e^{-x})
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
## Piecewise functions
|
||||||
|
|
||||||
|
A piecewise function is one that changes formulae at certain intervals. To solve piecewise functions, each of one's intervals should be considered.
|
||||||
|
|
||||||
|
### Absolute value function
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
|x| = \begin{cases}
|
||||||
|
x &\text{ if } x\geq 0 \\
|
||||||
|
-x &\text{ if } x < 0
|
||||||
|
\end{cases}
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
### Signum function
|
||||||
|
|
||||||
|
The signum function returns the sign of its argument.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\text{sgn}(x)=\begin{cases}
|
||||||
|
-1 &\text{ if } x < 0 \\
|
||||||
|
0 &\text{ if } x = 0 \\
|
||||||
|
1 &\text{ if } x > 0
|
||||||
|
\end{cases}
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
### Ramp function
|
||||||
|
|
||||||
|
The ramp function makes a ramp through the origin that suddenly flatlines at 0. Where $c$ is a constant:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
r(t)=\begin{cases}
|
||||||
|
0 &\text{ if } x \leq 0 \\
|
||||||
|
ct &\text{ if } x > 0
|
||||||
|
\end{cases}
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
<img src="https://upload.wikimedia.org/wikipedia/commons/c/c9/Ramp_function.svg" width=700>(Source: Wikimedia Commons, public domain)</img>
|
||||||
|
|
||||||
|
### Floor and ceiling functions
|
||||||
|
|
||||||
|
The floor function rounds down.
|
||||||
|
$$\lfloor x\rfloor$$
|
||||||
|
|
||||||
|
The ceiling function rounds up.
|
||||||
|
$$\lceil x \rceil$$
|
||||||
|
|
||||||
|
### Fractional part function
|
||||||
|
|
||||||
|
In a nutshell, the fractional part function:
|
||||||
|
|
||||||
|
- returns the part **after the decimal point** if the number is positive
|
||||||
|
- returns 1 - **the part after the decimal point** if the number is negative
|
||||||
|
|
||||||
|
$$\text{FRACPT}(x) = x-\lfloor x\rfloor$$
|
||||||
|
|
||||||
|
Because this function is periodic, it can be used to limit angles to the $[0, 2\pi)$ range with:
|
||||||
|
$$f(\theta) = 2\pi\cdot\text{FRACPT}\biggr(\frac{\theta}{2\pi}\biggr)$$
|
||||||
|
|
||||||
|
### Heaviside function
|
||||||
|
|
||||||
|
The Heaviside function effectively returns a boolean whether the number is greater than 0.
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
H(x) = \begin{cases}
|
||||||
|
0 &\text{ if } t < 0 \\
|
||||||
|
1 &\text{ if } t \geq 0
|
||||||
|
\end{cases}
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
This can be used to construct other piecewise functions by enabling them with $H(x-a)$ as a factor, where $a$ is the interval.
|
||||||
|
|
||||||
|
In a nutshell:
|
||||||
|
|
||||||
|
- $1-H(t-a)$ lets you "turn a function off" at at $t=a$
|
||||||
|
- $H(t-a)$ lets you "turn a function on at $t=a$
|
||||||
|
- $H(t-a) - H(t-b)$ leaves a function on in the interval $(a, b)$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
TODO: example for converting piecewise to heaviside via collecting heavisides
|
||||||
|
|
||||||
|
and vice versa
|
||||||
|
|
||||||
|
## Periodicity
|
||||||
|
|
||||||
|
The function $f(t)$ is periodic only if there is a repeating pattern, i.e. such that for every $x$, there is an $f(x) = f(x + nT)$, where $T$ is the period and $n$ is any integer.
|
||||||
|
|
||||||
|
### Circular motion
|
||||||
|
|
||||||
|
Please see [SL Physics 1#6.1 - Circular motion](/g11/sph3u7/#61-circular-motion) and its subcategory "Angular thingies" for more information.
|
||||||
|
|
||||||
|
## Partial function decomposition (PFD)
|
||||||
|
|
||||||
|
In order to PFD:
|
||||||
|
|
||||||
|
1. Factor the denominator into irreducibly quadratic or linear terms.
|
||||||
|
2. For each factor, create a term. Where capital letters below are constants:
|
||||||
|
- A linear factor $Bx+C$ has a term $\frac{A}{Bx+C}$.
|
||||||
|
- A quadratic factor $Dx^2+Ex+G$ has a term $\frac{H}{Dx^2+Ex+G}$.
|
||||||
|
3. Set the two equal to each other such that the denominators can be factored out.
|
||||||
|
4. Create systems of equations to solve for each constant.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
To decompose $\frac{x}{(x+1)(x^2+x+1)}$:
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\frac{x}{(x+1)(x^2+x+1)} &= \frac{A}{x+1} + \frac{Bx+C}{x^2+x+1} \\
|
||||||
|
&= \frac{A(x^2+x+1) + (Bx+C)(x+1)}{(x+1)(x^2+x+1)} \\
|
||||||
|
x &= A(x^2+x+1) + (Bx+C)(x+1) \\
|
||||||
|
0x^2 + x + 0 &= (Ax^2 + Bx^2) + (Ax + Bx + Cx) + (A + C) \\
|
||||||
|
\\
|
||||||
|
&\begin{cases}
|
||||||
|
0 = A + B \\
|
||||||
|
1 = A + B + C \\
|
||||||
|
0 = A + C
|
||||||
|
\end{cases}
|
||||||
|
\\
|
||||||
|
A &= -1 \\
|
||||||
|
B &= 1 \\
|
||||||
|
C &= 1 \\
|
||||||
|
\\
|
||||||
|
∴ \frac{x}{(x+1)(x^2+x+1)} &= -\frac{1}{x+1} + \frac{x + 1}{x^2 + x + 1}
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
Loading…
Reference in New Issue
Block a user