math115: add matrix-vector mult, identity matrix
This commit is contained in:
parent
9b03d2b3d6
commit
1b10f62162
@ -385,3 +385,98 @@ Each variable $x_n$ is a **leading variable** if there is a leading entry in $A$
|
||||
|
||||
!!! example
|
||||
TODO: LEARN example
|
||||
|
||||
### Matrix-vector product
|
||||
|
||||
In an augmented matrix, the system is consistent **if and only if** the resultant vector is a linear combination of the columns of the coefficient matrix.
|
||||
|
||||
$$\text{system is consistent}\iff\vec b = A\vec x$$
|
||||
|
||||
Where $\vec x$ is $\colv{x_1 \\ x_2 \\ ...}$ and $\vec a_n$ is the column vector of $A$ at $n$:
|
||||
|
||||
$$A\vec x = \vec a_1x_1 + \vec a_2x_2 + ... + \vec a_nx_n$$
|
||||
|
||||
**Alternatively**, the matrix-vector product can be considered a dot product such that where $\vec r_1, \vec r_2, ...$ are the rows of $A$:
|
||||
|
||||
$$A\vec x = \vec b = \colv{\vec r_1\bullet\vec x \\ \vec r_2\bullet\vec x \\ ... \\ \vec r_n\bullet\vec x}$$
|
||||
|
||||
!!! warning
|
||||
- $A$ must be $m\times n$.
|
||||
- $\vec x$ must be in $\mathbb R^n$ (number of columns)
|
||||
- $\vec b$ must be in $\mathbb R^m$ (number of rows)
|
||||
|
||||
!!! example
|
||||
The system below:
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
&x_1 &+ &3x_2 &- &2x_3 &= &-7 \\
|
||||
-&x_1 &- &4x_2 &+ &3x_3 &= &8
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
is equivalent to the augmented matrix:
|
||||
$$
|
||||
\left[\begin{array}{rrr | r}
|
||||
1 & 3 & -2 & -7 \\
|
||||
-1 & -4 & 3 & 8
|
||||
\end{array}\right]
|
||||
$$
|
||||
|
||||
which is consistent if and only if, where $\vec{a_1}, \vec{a_2}, \vec{a_3}$ are the column vectors of $A$:
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\vec b = \colv{-7 \\ 8} &= x_1\colv{1 \\ -1} + x_2\colv{3 \\ -4} + x_3 \colv{-2 \\ 3} \\
|
||||
&= x_a\vec{a_1} + x_2\vec{a_2} + x_3\vec{a_3}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
The matrix-vector product is distributive, so the following properties are true.
|
||||
|
||||
- $A(\vec x + \vec y) = A\vec x + A\vec y$
|
||||
- $(A+B)\vec x = A\vec x + B\vec x$
|
||||
- $A(c\vec x) = cA\vec x$
|
||||
|
||||
### Identity matrices
|
||||
|
||||
In a **homogeneous system** ($\vec b = \vec 0$), any linear combinations of the solutions to the system ($\vec x_1, ... \vec x_n$) are also solutions to the system.
|
||||
|
||||
The identity matrix ($I_n$) is a **square matrix** of size $n$ with the value 1 along the main diagonal and 0 everywhere else. The $i$th column is equal to the $i$th row, which is known as $\vec e_i$.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
I_4 &= \left[\begin{array}{rrrr}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0 \\
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 0 & 0 & 1
|
||||
\end{array}\right] \\
|
||||
&= [\begin{array}{} \vec e_1 & \vec e_2 & \vec e_3 & \vec e_4\end{array}]
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
## Matrix equality
|
||||
|
||||
Matrices are only equal if *every* possible linear combination is equal ($A\vec x = B\vec x$ **does not mean** $A = B$).
|
||||
|
||||
If $A\vec x = B\vec x$ for every $\vec x\in \mathbb R^n$, then $A = B$. This can be proven using the identity matrix:
|
||||
|
||||
$$
|
||||
\text{Since }A\vec e_i = B\vec e_i \text{ for }i = 1, ... n: \\
|
||||
A\vec e_i = \vec a_i, B\vec e_i = \vec b_i \\
|
||||
∴ \vec a_i = \vec b_i\text{ for } i=1, ... n,\text{ thus } A=B.
|
||||
$$
|
||||
|
||||
## Flow
|
||||
|
||||
!!! definition
|
||||
- A **network** is a system of junctions connected by directed lines, similar to a directed graph.
|
||||
|
||||
In a **junction**, the flow in must equal the flow out. A network that follows the junction rule is at **equilibrium**.
|
||||
|
||||
In an electrical diagram, if a reference direction is selected, flow going opposite the reference direction is negative.
|
||||
|
||||
Matrices can be applied by applying the junction rule to systems with equal flow in and flow out for each of the **smaller systems** (i.e., not trying to meet every point)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user