ece205: complete course!
This commit is contained in:
parent
3268504610
commit
34c1d20461
@ -542,6 +542,10 @@ $$\int^\infty_{-\infty}[f(t)]^2dt=\frac{1}{2\pi}\int^\infty_{-\infty}|\hat f(\om
|
|||||||
|
|
||||||
- FT/IFT are linear: $\mathcal F\{af+bg\}=a\mathcal F\{f\}+b\mathcal F\{g\}$
|
- FT/IFT are linear: $\mathcal F\{af+bg\}=a\mathcal F\{f\}+b\mathcal F\{g\}$
|
||||||
- FT is scalable: $\mathcal F\{f(ax)\}=\frac 1 a\hat f\left(\frac{\omega}{a}\right)$
|
- FT is scalable: $\mathcal F\{f(ax)\}=\frac 1 a\hat f\left(\frac{\omega}{a}\right)$
|
||||||
|
- FT can shift frequencies: $\mathcal F\{e^{iax}f(x)\}=\hat f(\omega-a)$
|
||||||
|
- FT can shift time: $\mathcal F\{f(x-a)\}=e^{ia\omega}\hat f(\omega)$
|
||||||
|
- If the IFT is applicable: $\mathcal F\{f^{(n)}(x)\}=(i\omega)^n\hat f(\omega)$
|
||||||
|
- The FT is symmetrical: $\mathcal F\{\hat f(x)\}=2\pi f(-\omega)$
|
||||||
|
|
||||||
## Resources
|
## Resources
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user