ece205: add fourier transform
This commit is contained in:
parent
db3cb7c96d
commit
4653b6a148
@ -509,6 +509,40 @@ $$\frac{1}{2L}\int^L_{-L}\underbrace{[f(t)]^2}_\text{time domain}dt=\sum^\infty_
|
||||
\frac{\pi^2}{6}&=\sum^\infty_{n=1}\frac{1}{n^2}
|
||||
\end{align*}
|
||||
|
||||
### Fourier transform
|
||||
|
||||
To convert a function to a Fourier series:
|
||||
|
||||
$$\mathcal F\{f(x)\}=\hat f(\omega)=\int^\infty_{-\infty}f(x)e^{-i\omega x}dx$$
|
||||
|
||||
To convert a Fourier series back to the original function, the following conditions must hold:
|
||||
|
||||
- there must not be any infinite discontinuities: $\int^\infty_{-\infty}|f(x)|dx<\infty$
|
||||
- in any finite interval, there must be a finite number of extrema and discontinuities
|
||||
|
||||
Then, the **Fourier integral** / **inverse Fourier transform** converges to $f(x)$ wherever continuous and $\frac 1 2[f(x^+)+f(x^-)]$ at discontinuities.
|
||||
|
||||
$$\mathcal F^{-1}\{\hat f(\omega)\}=f(x)=\frac{1}{2\pi}\int^\infty_{-\infty}\hat f(\omega)e^{i\omega x}d\omega$$
|
||||
|
||||
!!! example
|
||||
For $f(x)=\begin{cases} 1 & -1<x<1 \\ 0 & \text{else}\end{cases}$:
|
||||
|
||||
\begin{align*}
|
||||
\mathcal F\{f(x)\}&=\int^\infty_{-\infty}f(x)e^{-i\omega x}dx \\
|
||||
&=\int^1_{-1}e^{-i\omega x}dx \\
|
||||
&=\frac{i\omega}(e^{i\omega}-e^{-i\omega}) \\
|
||||
&=\frac{2\sin\omega}{\omega}
|
||||
\end{align*}
|
||||
|
||||
Parseval's theorem can be generalised to non-periodic situations via Fourier transforms.
|
||||
|
||||
$$\int^\infty_{-\infty}[f(t)]^2dt=\frac{1}{2\pi}\int^\infty_{-\infty}|\hat f(\omega)|^2d\omega$$
|
||||
|
||||
#### Properties of the Fourier transform
|
||||
|
||||
- FT/IFT are linear: $\mathcal F\{af+bg\}=a\mathcal F\{f\}+b\mathcal F\{g\}$
|
||||
- FT is scalable: $\mathcal F\{f(ax)\}=\frac 1 a\hat f\left(\frac{\omega}{a}\right)$
|
||||
|
||||
## Resources
|
||||
|
||||
- [Laplace Table](/resources/ece/laplace.pdf)
|
||||
|
Loading…
Reference in New Issue
Block a user