math119: add chain rule

This commit is contained in:
eggy 2023-01-23 11:10:23 -05:00
parent 8ae060e46f
commit 4676b0ff25

View File

@ -216,3 +216,31 @@ f(x,y,z)&=\begin{bmatrix}x(t) \\ y(t) \\ z(t)\end{bmatrix} \\
&=(x(t), y(t), z(t))
\end{align*}
$$
The **derivative** of a parametric function is equal to the vector sum of the derivative of its components:
$$\frac{df}{dt}=\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2+\left(\frac{dz}{dt}\right)^2}$$
Sometimes, the **chain rule for multivariable functions** creates a new branch in a tree for each independent variable.
For two-variable functions, if $z=f(x,y)$:
$$\frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}$$
Sample tree diagram:
<img src="/resources/images/two-var-tree.jpg" width=300>(Source: LibreTexts)</img>
!!! example
This can be extended for multiple functions — for the function $z=f(x,y)$, where $x=g(u,v)$ and $y=h(u,v)$:
<img src="/resources/images/many-var-tree.jpg" width=300>(Source: LibreTexts)</img>
Determining the partial derivatives with respect to $u$ or $v$ can be done by only following the branches that end with those terms.
$$
\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial u} \\
$$
!!! warning
If the function only depends on one variable, $\frac{d}{dx}$ is used. Multivariable functions must use $\frac{\partial}{\partial x}$ to treat the other variables as constant.