ece240: haha shoot me now

This commit is contained in:
eggy 2023-11-20 19:05:20 -05:00
parent 04adaedfd3
commit 6466c633c0

View File

@ -155,3 +155,55 @@ The input resistance of common amplifiers is infinity.
<img src="https://upload.wikimedia.org/wikipedia/commons/3/30/N-channel_JFET_source_follower.svg" width=200>(Source: Wikimedia Commons)</img> <img src="https://upload.wikimedia.org/wikipedia/commons/3/30/N-channel_JFET_source_follower.svg" width=200>(Source: Wikimedia Commons)</img>
As $V_{gs}$ is not necessarily zero, dependent sources must be left in when solving for output resistance, and so a small test source at the point of interest is required. As $V_{gs}$ is not necessarily zero, dependent sources must be left in when solving for output resistance, and so a small test source at the point of interest is required.
### Common-gate amplifiers
These can be represented by either the T-model or pi-model. The gate of the transistor is grounded.
$$
A_{VO}=g_mR_d \\
G_V=\frac{V_o}{V_{sig}}=g_mR_d\left(\frac{1}{1+g_mR_{sig}}\right)
$$
<img src="https://upload.wikimedia.org/wikipedia/commons/9/99/Common_Gate.svg" width=200 />
<img src="https://upload.wikimedia.org/wikipedia/commons/a/a9/Common_gate_output_resistance.PNG" width=400 />
### Differential pairs
These are used at the input of opamps.
In **differential mode,** assuming $Q_1=Q_2$:
$V_{in}^+=-V_{in}^-=\frac{V_d}{2}$, so the current going down from both gates is equal $i_{gs1}=-i_{gs2}$. This means that node before $R_E$ is effectively ground, so the circuit can be split into two common source circuits.
$$G_D=\frac{V_o^--V_o^+}{V_d}=\frac{R_{C1}g_m}{1}=-\frac{-R_{C1}}{r_m}$$
<img src="https://upload.wikimedia.org/wikipedia/commons/3/3a/Differential_amplifier_long-tailed_pair.svg" width=300 />
In **common mode**:
$V_{in}^+=V_{in}^-$
$$G_{CM}=-\frac{R_D}{r_m+R_S+2R_C}$$
The **common-mode rejection ratio** is:
$$\frac{G_D}{G_{CM}}=1+\frac{2R_C}{r_m+R_s}$$
## MOSFET biasing
To bias a MOSFET:
- the transistor must be on: $V_{GS}>V_t$
- the transistor must be saturated $V_{DS} > (V_{GS}-V_t)$
$$V_{GS}=V_G-R_EI_D$$
This is a negative feedback loop that forces a constant $I_D$.
<img src="https://i.stack.imgur.com/Yxslx.png" width=300 />
With two DC supplies ($-V_{EE}, V_{DD}$), having an $R_G$ results in:
$$I_D=\frac{-V_{EE}}{R_S}-\frac{V_{GS}}{R_S}$$