ece240: haha shoot me now
This commit is contained in:
parent
04adaedfd3
commit
6466c633c0
@ -155,3 +155,55 @@ The input resistance of common amplifiers is infinity.
|
||||
<img src="https://upload.wikimedia.org/wikipedia/commons/3/30/N-channel_JFET_source_follower.svg" width=200>(Source: Wikimedia Commons)</img>
|
||||
|
||||
As $V_{gs}$ is not necessarily zero, dependent sources must be left in when solving for output resistance, and so a small test source at the point of interest is required.
|
||||
|
||||
### Common-gate amplifiers
|
||||
|
||||
These can be represented by either the T-model or pi-model. The gate of the transistor is grounded.
|
||||
|
||||
$$
|
||||
A_{VO}=g_mR_d \\
|
||||
G_V=\frac{V_o}{V_{sig}}=g_mR_d\left(\frac{1}{1+g_mR_{sig}}\right)
|
||||
$$
|
||||
|
||||
<img src="https://upload.wikimedia.org/wikipedia/commons/9/99/Common_Gate.svg" width=200 />
|
||||
|
||||
<img src="https://upload.wikimedia.org/wikipedia/commons/a/a9/Common_gate_output_resistance.PNG" width=400 />
|
||||
|
||||
### Differential pairs
|
||||
|
||||
These are used at the input of opamps.
|
||||
|
||||
In **differential mode,** assuming $Q_1=Q_2$:
|
||||
|
||||
$V_{in}^+=-V_{in}^-=\frac{V_d}{2}$, so the current going down from both gates is equal $i_{gs1}=-i_{gs2}$. This means that node before $R_E$ is effectively ground, so the circuit can be split into two common source circuits.
|
||||
|
||||
$$G_D=\frac{V_o^--V_o^+}{V_d}=\frac{R_{C1}g_m}{1}=-\frac{-R_{C1}}{r_m}$$
|
||||
|
||||
<img src="https://upload.wikimedia.org/wikipedia/commons/3/3a/Differential_amplifier_long-tailed_pair.svg" width=300 />
|
||||
|
||||
In **common mode**:
|
||||
|
||||
$V_{in}^+=V_{in}^-$
|
||||
|
||||
$$G_{CM}=-\frac{R_D}{r_m+R_S+2R_C}$$
|
||||
|
||||
The **common-mode rejection ratio** is:
|
||||
|
||||
$$\frac{G_D}{G_{CM}}=1+\frac{2R_C}{r_m+R_s}$$
|
||||
|
||||
## MOSFET biasing
|
||||
|
||||
To bias a MOSFET:
|
||||
|
||||
- the transistor must be on: $V_{GS}>V_t$
|
||||
- the transistor must be saturated $V_{DS} > (V_{GS}-V_t)$
|
||||
|
||||
$$V_{GS}=V_G-R_EI_D$$
|
||||
|
||||
This is a negative feedback loop that forces a constant $I_D$.
|
||||
|
||||
<img src="https://i.stack.imgur.com/Yxslx.png" width=300 />
|
||||
|
||||
With two DC supplies ($-V_{EE}, V_{DD}$), having an $R_G$ results in:
|
||||
|
||||
$$I_D=\frac{-V_{EE}}{R_S}-\frac{V_{GS}}{R_S}$$
|
||||
|
Loading…
Reference in New Issue
Block a user