math117: add trig

This commit is contained in:
eggy 2022-10-02 23:02:49 -04:00
parent 115a12cc79
commit 6f3ca9a241

View File

@ -200,3 +200,53 @@ In order to PFD:
∴ \frac{x}{(x+1)(x^2+x+1)} &= -\frac{1}{x+1} + \frac{x + 1}{x^2 + x + 1} ∴ \frac{x}{(x+1)(x^2+x+1)} &= -\frac{1}{x+1} + \frac{x + 1}{x^2 + x + 1}
\end{align*} \end{align*}
$$ $$
## Trigonometry
1 radian represents the angle when the length of the arc of a circle is equal to the radius. Where $s$ is the arc length:
$$\theta=\frac{s}{r}$$
The following table indicates the special angles that should be memorised:
| Angle (rad) | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | 1 |
| --- | --- | --- | --- | --- | --- |
| cos | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | 0 |
| sin | 0 | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1 |
### Identities
The Pythagorean identity is the one behind right angle triangles:
$$\cos^2\theta+\sin^2\theta = 1$$
Cosine and sine can be converted between by an angle shift:
$$
\cos\biggr(\theta-\frac{\pi}{2}\biggr) = \sin\theta \\
\sin\biggr(\theta-\frac{\pi}{2}\biggr) = \cos\theta
$$
The **angle sum identities** allow expanding out angles:
$$
\cos(a+b)=\cos a\cos b - \sin a\sin b \\
\sin(a+b)=\sin a\cos b + \cos a\sin b
$$
Subtracting angles is equal to the conjugates of the angle sum identities.
The **double angle identities** simplify the angle sum identity for a specific case.
$$
\sin2\theta = 2\sin\theta\cos\theta \\
$$
The **half angle formulas** are just random shit.
$$
1+\tan^2\theta = \sec^2\theta \\
\cos^2\theta = \frac{1}{2}(1+\cos2\theta) \\
\sin^2\theta = \frac{1}{2}(1-\cos2\theta)
$$