math117: add trig
This commit is contained in:
parent
115a12cc79
commit
6f3ca9a241
@ -200,3 +200,53 @@ In order to PFD:
|
|||||||
∴ \frac{x}{(x+1)(x^2+x+1)} &= -\frac{1}{x+1} + \frac{x + 1}{x^2 + x + 1}
|
∴ \frac{x}{(x+1)(x^2+x+1)} &= -\frac{1}{x+1} + \frac{x + 1}{x^2 + x + 1}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
## Trigonometry
|
||||||
|
|
||||||
|
1 radian represents the angle when the length of the arc of a circle is equal to the radius. Where $s$ is the arc length:
|
||||||
|
|
||||||
|
$$\theta=\frac{s}{r}$$
|
||||||
|
|
||||||
|
The following table indicates the special angles that should be memorised:
|
||||||
|
|
||||||
|
| Angle (rad) | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | 1 |
|
||||||
|
| --- | --- | --- | --- | --- | --- |
|
||||||
|
| cos | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | 0 |
|
||||||
|
| sin | 0 | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1 |
|
||||||
|
|
||||||
|
### Identities
|
||||||
|
|
||||||
|
The Pythagorean identity is the one behind right angle triangles:
|
||||||
|
|
||||||
|
$$\cos^2\theta+\sin^2\theta = 1$$
|
||||||
|
|
||||||
|
Cosine and sine can be converted between by an angle shift:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\cos\biggr(\theta-\frac{\pi}{2}\biggr) = \sin\theta \\
|
||||||
|
\sin\biggr(\theta-\frac{\pi}{2}\biggr) = \cos\theta
|
||||||
|
$$
|
||||||
|
|
||||||
|
The **angle sum identities** allow expanding out angles:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\cos(a+b)=\cos a\cos b - \sin a\sin b \\
|
||||||
|
\sin(a+b)=\sin a\cos b + \cos a\sin b
|
||||||
|
$$
|
||||||
|
|
||||||
|
Subtracting angles is equal to the conjugates of the angle sum identities.
|
||||||
|
|
||||||
|
The **double angle identities** simplify the angle sum identity for a specific case.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\sin2\theta = 2\sin\theta\cos\theta \\
|
||||||
|
$$
|
||||||
|
|
||||||
|
The **half angle formulas** are just random shit.
|
||||||
|
|
||||||
|
$$
|
||||||
|
1+\tan^2\theta = \sec^2\theta \\
|
||||||
|
\cos^2\theta = \frac{1}{2}(1+\cos2\theta) \\
|
||||||
|
\sin^2\theta = \frac{1}{2}(1-\cos2\theta)
|
||||||
|
$$
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user