ece205: fix bug

This commit is contained in:
eggy 2023-11-21 22:01:58 -05:00
parent e0dcf5a960
commit 819849f7c6

View File

@ -396,7 +396,7 @@ Thus if a Fourier series on $(0,L)$ exists, it can be expressed as either a **Fo
\begin{align*}
u(x,t)&=\sum^\infty_{n=1}\alpha_ne^{-left(\frac{n\pi\sqrt 2}{\pi}\right)^2t}\sin(\frac{n\pi x}{\pi})
&=\sum^\infty_{n=1}\apha_ne^{-2n^2t}\sin(nx) \\
&=\sum^\infty_{n=1}\alpha_ne^{-2n^2t}\sin(nx) \\
\alpha_n&=\frac 2 L\int^L_0f(x)\sin(\frac{n\pi x}{L})dx \\
&=\frac2\pi\int^{\pi/2}_0\frac\pi 2\sin(nx)dx+\frac2\pi\int^\pi_{\pi/2}(x-\frac\pi2\sin(nx)dx \\
&=\frac 1 n[1+(-1)^{n+1}-\cos(\frac{n\pi}{2})-\frac{2}{n\pi}\sin(\frac{n\pi}{2}]