chore: add starter content
This commit is contained in:
parent
76865df24f
commit
8e16f97bfb
@ -1,3 +1,42 @@
|
||||
# ECE 106: Electricity and Magnetism
|
||||
|
||||
## MATH 117 review
|
||||
|
||||
!!! definition
|
||||
A definite integral is composed of:
|
||||
|
||||
- the **upper limit**, $b$,
|
||||
- the **lower limit**, $a$,
|
||||
- the **integrand**, $f(x)$, and
|
||||
- the **differential element**, $dx$.
|
||||
|
||||
$$\int^b_a f(x)\ dx$$
|
||||
|
||||
The original function **cannot be recovered** from the result of a definite integral unless it is known that $f(x)$ is a constant.
|
||||
|
||||
## N-dimensional integrals
|
||||
|
||||
Much like how $dx$ represents an infinitely small line, $dx\cdot dy$ represents an infinitely small rectangle. This means that the surface area of an object can be expressed as:
|
||||
|
||||
$$dS=dx\cdot dy$$
|
||||
|
||||
Therefore, the area of a function can be expressed as:
|
||||
|
||||
$$S=\int^x_0\int^y_0 dy\ dx$$
|
||||
|
||||
where $y$ is usually equal to $f(x)$, changing on each iteration.
|
||||
|
||||
!!! example
|
||||
The area of a circle can be expressed as $y=\pm\sqrt{r^2-x^2}$. This can be reduced to $y=2\sqrt{r^2-x^2}$ because of the symmetry of the equation.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
A&=\int^r_0\int^{\sqrt{r^2-x^2}}_0 dy\ dx \\
|
||||
&=\int^r_0\sqrt{r^2-x^2}\ dx
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
!!! warning
|
||||
Similar to parentheses, the correct integral squiggly must be paired with the correct differential element.
|
||||
|
||||
## Cartesian coordinates
|
||||
|
@ -1,2 +1,3 @@
|
||||
# ECE 108: Discrete Math 1
|
||||
|
||||
## Truth tables
|
||||
|
3
docs/1b/ece140.md
Normal file
3
docs/1b/ece140.md
Normal file
@ -0,0 +1,3 @@
|
||||
# ECE 140: Linear Circuits
|
||||
|
||||
## Voltage, current, and resistance
|
@ -1 +1,5 @@
|
||||
# MATH 119: Calculus 2
|
||||
|
||||
## Multivariable functions
|
||||
|
||||
### Sketching multivariable functions
|
||||
|
Loading…
Reference in New Issue
Block a user