ece108: add bijective/composition

This commit is contained in:
eggy 2023-02-07 11:10:31 -05:00
parent 8ca3cf46ea
commit e610ada836

View File

@ -538,9 +538,38 @@ An **injective function**, **injection**, or **one-to-one function** is a functi
$$\forall x_1,x_2\in\text{dom}(f), \text{ if } f(x_1)=f(x_2),x_1=x_2$$ $$\forall x_1,x_2\in\text{dom}(f), \text{ if } f(x_1)=f(x_2),x_1=x_2$$
A **surjective function**, **surjection**, or **onto** is a function that has its codomain equal to its range. A **surjective function**, **surjection**, or **onto** is a function that has its codomain equal to its range. A surjection $g:Y\to X$ exists if and only if an injection $f:X\to Y$ exists.
$$ $$
\forall y\in\text{cod}(f),\exists x\in\text{dom}(f), f(x)=y \\ \forall y\in\text{cod}(f),\exists x\in\text{dom}(f), f(x)=y \\
\text{rang}(f)=\text{cod}(f) \text{rang}(f)=\text{cod}(f)
$$ $$
A **bijective function** is both injective and surjective.
An **inverse relation** swaps the domain, codomain, and ordered pairs.
$$
\begin{align*{
R^{-1}:Y&\to X \\
R(x)&\mapsto x
$$
A function is **invective** or **invertible** if and only if it is bijective. All inversions are also bijective.
$$f^{-1^{-1}}=f$$
A **composition** maps the codomain of one to the domain of another function only if the first is a subset ($Y_1\subseteq Y_2$).
$$
\begin{align*}
f&:X\to Y_1,x\mapsto f(x) \\
g&:Y_2\to Z,y\mapsto g(y) \\
gf&: X\to Z,x\mapsto g(f(x))
\end{align*}
$$
Compositions are commutative but not associative.
- $h(gf)=(hg)f$
- $hgf\neq hfg$