ece108: add bijective/composition
This commit is contained in:
parent
8ca3cf46ea
commit
e610ada836
@ -538,9 +538,38 @@ An **injective function**, **injection**, or **one-to-one function** is a functi
|
||||
|
||||
$$\forall x_1,x_2\in\text{dom}(f), \text{ if } f(x_1)=f(x_2),x_1=x_2$$
|
||||
|
||||
A **surjective function**, **surjection**, or **onto** is a function that has its codomain equal to its range.
|
||||
A **surjective function**, **surjection**, or **onto** is a function that has its codomain equal to its range. A surjection $g:Y\to X$ exists if and only if an injection $f:X\to Y$ exists.
|
||||
|
||||
$$
|
||||
\forall y\in\text{cod}(f),\exists x\in\text{dom}(f), f(x)=y \\
|
||||
\text{rang}(f)=\text{cod}(f)
|
||||
$$
|
||||
|
||||
A **bijective function** is both injective and surjective.
|
||||
|
||||
An **inverse relation** swaps the domain, codomain, and ordered pairs.
|
||||
|
||||
$$
|
||||
\begin{align*{
|
||||
R^{-1}:Y&\to X \\
|
||||
R(x)&\mapsto x
|
||||
$$
|
||||
|
||||
A function is **invective** or **invertible** if and only if it is bijective. All inversions are also bijective.
|
||||
|
||||
$$f^{-1^{-1}}=f$$
|
||||
|
||||
A **composition** maps the codomain of one to the domain of another function only if the first is a subset ($Y_1\subseteq Y_2$).
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
f&:X\to Y_1,x\mapsto f(x) \\
|
||||
g&:Y_2\to Z,y\mapsto g(y) \\
|
||||
gf&: X\to Z,x\mapsto g(f(x))
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Compositions are commutative but not associative.
|
||||
|
||||
- $h(gf)=(hg)f$
|
||||
- $hgf\neq hfg$
|
||||
|
Loading…
Reference in New Issue
Block a user