math119: add series
This commit is contained in:
parent
eb14b81c3c
commit
ef08df8019
@ -708,3 +708,45 @@ An approximation correct to $n$ decimal places requires that $|R_n(x)|<10^{-n}$.
|
|||||||
The upper and lower bounds of a Taylor polynomial are clearly $P(x)\pm R(x)$. Integrating them separately reveals creates bounds for the integral.
|
The upper and lower bounds of a Taylor polynomial are clearly $P(x)\pm R(x)$. Integrating them separately reveals creates bounds for the integral.
|
||||||
|
|
||||||
$$\int P(x)dx-\int R(x)dx\leq\int P(x)\leq\int P(x)dx +\int R(x)dx$$
|
$$\int P(x)dx-\int R(x)dx\leq\int P(x)\leq\int P(x)dx +\int R(x)dx$$
|
||||||
|
|
||||||
|
## Infinite series
|
||||||
|
|
||||||
|
The $n$th partial sum of a sequence is used to determine divergence.
|
||||||
|
|
||||||
|
$$S_n=\sum^n_{k=0}a_k=a_0 + a_1 ... a_n$$
|
||||||
|
|
||||||
|
A sum converges to $S$ if the sum eventually ends up there. Otherwise, if the limit is infinity or does not exist, it diverges.
|
||||||
|
|
||||||
|
$$\lim_{x\to\infty}S_n=S\implies\sum^\infty_{n=0}a_n=S$$
|
||||||
|
|
||||||
|
### Divergence test
|
||||||
|
|
||||||
|
By the divergence test, if the limit of each term never reaches zero, the sum diverges.
|
||||||
|
|
||||||
|
$$\lim_{x\to\infty}a_n\neq 0\implies\sum^\infty_{n=0}a_n\text{ diverges}$$
|
||||||
|
|
||||||
|
### Geometric series
|
||||||
|
|
||||||
|
The $n$th partial sum of a geometric series $ar^n$ is equal to:
|
||||||
|
|
||||||
|
$$S_n=\frac{a(1-r)^{n+1}}{1-r}$$
|
||||||
|
|
||||||
|
To simply test for convergence:
|
||||||
|
|
||||||
|
- If $|r|<1$, $S_n\to\frac{a}{1-r}$.
|
||||||
|
- Otherwise, it diverges by the test for divergence.
|
||||||
|
|
||||||
|
### Integral test
|
||||||
|
|
||||||
|
If $f(x)$ is **continuous**, **decreasing**, and **positive** on some $[a,\infty)$:
|
||||||
|
|
||||||
|
$$\int^\infty_af(x)dx\text{ converges}\iff\sum^\infty_{k=a}f(k)\text{ converges$$
|
||||||
|
|
||||||
|
### p-series test
|
||||||
|
|
||||||
|
For all $p\in\mathbb R$, a series of the form
|
||||||
|
|
||||||
|
$$\sum^\infty_{n=1}\frac{1}{n^p}$$
|
||||||
|
|
||||||
|
converges if and only if $p>1$.
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user