ece205: add fourier
This commit is contained in:
parent
f57c120590
commit
f9a2115408
@ -277,6 +277,37 @@ $$
|
|||||||
\boxed{b_n=\frac 1 L\int^L_{-L}f(x)\sin(\frac{n\pi x}{L})dx}
|
\boxed{b_n=\frac 1 L\int^L_{-L}f(x)\sin(\frac{n\pi x}{L})dx}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
The Fourier series for the square wave function: $f(x)=\begin{cases}-1 & -\pi < x < 0 \\ 1 & 0 < x < \pi\end{cases}$
|
||||||
|
|
||||||
|
The period is clearly $2\pi\implies L=\pi$. $f(x)$ is also odd, by inspection.
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
a_n&=\frac 1\pi\int^\pi_{-\pi}\underbrace{f(x)\cos(\frac{n\pi x}{\pi})}_\text{odd × even = odd}dx=0=a_0 \\
|
||||||
|
b_n&=\frac 1 \pi\int^\pi_{-\pi}f(x)\sin(\frac{n\pi x}{\pi})dx \\
|
||||||
|
\tag{even}&=\frac 2\pi\int^\pi_0f(x)\sin(nx)dx \\
|
||||||
|
\tag{$f(x)>1$ when $x>0$}&=\frac 2\pi\int^\pi_0\sin(nx)dx \\
|
||||||
|
&=\frac 2\pi\left[\frac{-\cos nx}{n}\right]^\pi_0 \\
|
||||||
|
&=\begin{cases}
|
||||||
|
\frac{4}{\pi n} & \text{if $n$ is odd} \\
|
||||||
|
0 & \text{else}
|
||||||
|
\end{cases}
|
||||||
|
\therefore f(x)&=\sum^\infty_{n=1}\frac 2\pi\left(\frac{1-(-1)^n}{n}\sin(nx)\right) \\
|
||||||
|
\tag{only odd $n$s are non-zero}&=\frac4\pi\sum^\infty_{n=1}\frac{1}{2n-1}\sin[(2n-1)x]
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Thus the Fourier series is $$.
|
||||||
|
|
||||||
|
### Separation of variables
|
||||||
|
|
||||||
|
To solve IBVPs, where $X(x)$ and $T(t)$ are exclusively functions of their respective variables:
|
||||||
|
|
||||||
|
$$u(x,t)=X(x)T(t)$$
|
||||||
|
|
||||||
|
Substituting it into the IBVP results in a **separation constant** $-\lambda$.
|
||||||
|
|
||||||
|
$$\boxed{\frac{T'(t)}{a^2T(t)}=\frac{X''(x)}{X(x)}=-\lambda}$$
|
||||||
|
|
||||||
## Resources
|
## Resources
|
||||||
|
|
||||||
- [Laplace Table](/resources/ece/laplace.pdf)
|
- [Laplace Table](/resources/ece/laplace.pdf)
|
||||||
|
Loading…
Reference in New Issue
Block a user