math119: add power series and big o
This commit is contained in:
parent
5ea4838674
commit
fbf3004917
@ -790,4 +790,62 @@ An absolutely converging series also has its regular form converge.
|
|||||||
|
|
||||||
A series converges **conditionally** if it converges but not absolutely. This indicates that it is possible for all $b\in\mathbb R$ to rearrange $\sum a_n$ to cause it to converge to $b$.
|
A series converges **conditionally** if it converges but not absolutely. This indicates that it is possible for all $b\in\mathbb R$ to rearrange $\sum a_n$ to cause it to converge to $b$.
|
||||||
|
|
||||||
|
### Power series
|
||||||
|
|
||||||
|
A power series **centred at $x_0$** is an infinitely long polynomial.
|
||||||
|
|
||||||
|
$$\sum^\infty_{n=0}c_n(x-x_0)^n$$
|
||||||
|
|
||||||
|
If there are multiple identified domains of convergence, the endpoints must be tested separately to get the **interval of convergence**. The **radius of convergence** is the amplitude of the interval, regardless of inclusion/exclusion.
|
||||||
|
|
||||||
|
$$r=\frac{\text{max}-\text{min}}{2}$$
|
||||||
|
|
||||||
|
For a power series of radius $R$, regardless if it is differentiated, integrated, multiplied (by non-zero), the radius remains $R$.
|
||||||
|
|
||||||
|
!!! warning
|
||||||
|
The interval may change.
|
||||||
|
|
||||||
|
Adding functions with different radii results in a radius roughly near the smaller interval of convergence.
|
||||||
|
|
||||||
|
The **binomial series** is the infinite expansion of $(1+x)^m$ with radius 1.
|
||||||
|
|
||||||
|
$$(1+x)^m=\sum^\infty_{n=0}\frac{m(m-1)(m-2)...(m-n+1)}{n!}x^n$$
|
||||||
|
|
||||||
|
## Big O notation
|
||||||
|
|
||||||
|
A function $f$ is of order $g$ as $x\to x_0$ if $|f(x)|\leq c|g(x)|$ for all $x$ near $x_0$. This is written as big O:
|
||||||
|
|
||||||
|
$$f(x)=O(g(x))\text{ as }x\to x_0$$
|
||||||
|
|
||||||
|
The inner function only dictates how it grows, discarding any constant terms.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
As $x\to 0$, $x^3=O(x^2)$ as well as $O(x)$ and $O(1)$. Thus $kx^3=O(x^2)$ for all $k\in\mathbb R$.
|
||||||
|
|
||||||
|
However, $x^3=O(x^4)$ only as $x\to\infty$ by the definition.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
As $|\sin x|\leq |x|$, $\sin x=O(x)$ as $x\to 0$.
|
||||||
|
|
||||||
|
|
||||||
|
If $f=O(x^m)$ and $g=O(x^n)$ as $x\to 0$:
|
||||||
|
|
||||||
|
- $fg=O(x^{m+n})$
|
||||||
|
- $f+g=O(x^q)$, where `q=min(m,n)`
|
||||||
|
- $kO(x^n)=O(x^n)$
|
||||||
|
- $O(x^n)^m=O(x^{nm})$
|
||||||
|
- $O(x^m)\div x^n=O(x^{m-n})$
|
||||||
|
|
||||||
|
With Taylor series, big O is the remainder.
|
||||||
|
|
||||||
|
$$R_n(x)=O((x-x_0)^{n+1})$$
|
||||||
|
|
||||||
|
The limit of big O is the behaviour of $g(x)$.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
\begin{align*}
|
||||||
|
\lim_{x\to 0}\frac{x^2e^x+2\cos x-2}{x^3}&=\lim_{x\to 0}\frac{x^3+O(x^4)}{x^3} \\
|
||||||
|
&= 1+O(x) \\
|
||||||
|
&= 1
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user