eifueo/docs/sph3u7.md
2020-09-20 15:18:31 -04:00

3.1 KiB
Raw Blame History

SL Physics

The course code for this page is SPH3U7.

1.1 - Measurements in physics

Fundamental units

Every other SI unit is derived from fundamental units. Memorise these!

Quantity type Unit Symbol
Time Second s
Distance Metre m
Mass Kilogram kg
Electric current Ampere A
Temperature Kelvin K
Amount of substance Mole mol
Luminous intensity Candela cd

Metric prefixes

Every SI unit can be expanded with metric prefixes.

!!! example milli + metre = millimetre ($10^{-3}) m

Prefix Abbreviation Value Inverse (\(10^{-n}\)) abbreviation Inverse prefix
deca- da \(10^1\) d deci-
hecto- h \(10^2\) c centi-
kilo- k \(10^3\) m milli-
mega- M \(10^6\) µ micro-
giga- G \(10^9\) n nano-
tera- T \(10^{12}\) p pico-
peta- P \(10^{15}\) f femto-
exa- E \(10^{18}\) a atto-

Significant figures

  • The leftmost non-zero digit is the most significant digit.
  • If there is no decimal point, the rightmost non-zero digit is the least significant digit.
    • Otherwise, the right-most digit (including zeroes) is the least significant digit.
  • All digits between the most and least significant digits are significant.
  • Pure (discrete) numbers are unitless and have infinite significant figures.

!!! example In \(123000\), there are 3 significant digits.
In \(0.1230\), there are 4 significant digits.

  • When adding or subtracting significant figures, the answer has the same number of decimals as the number with the lowest number of decimal points.
  • When multiplying or dividing significant figures, the answer has the same number of significant figures as the number with the lowest number of significant figures.
  • Values of a calculated result can be no more precise than the least precise value used.

!!! example \[1.25 + 1.20 = 2.45\] \[1.24 + 1.2 = 2.4\]

!!! warning When rounding an answer with significant figures, if the least significant figure is \(5\), round up only if the second-least significant figure is odd.

$$1.25 + 1.2 = 2.4$$
$$1.35 + 1.2 = 2.6$$

Scientific notation

Scientific notation is written in the form of \(m×10^{n}\), where \(1 \leq m < 10, n \in \mathbb{Z}\). All digits before the multiplication sign in scientific notation are significant.

!!! example The speed of light is 300 000 000 ms-1, or \(3×10^8\) ms-1.

Orders of magnitude

The order of magnitude of a number can be found by converting it to scientific notation and taking its power of 10.

!!! example - The order of magnitude of 212000, or \(2.12×10^{5}\), is 5. - The order of magnitude of 0.212, or \(2.12×10^{-1}\), is -1.

1.2 - Uncertainties and errors

1.3 - Vectors and scalars

Resources