eifueo/docs/ce1/math117.md
2022-09-19 10:06:12 -04:00

73 lines
2.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# MATH 117: Calculus 1
## Functions
A **function** is a rule where each input has exactly one output, which can be determined by the **vertical line test**.
!!! definition
- The **domain** is the set of allowable independent values.
- The **range** is the set of allowable dependent values.
Functions can be **composed** to apply the result of one function to another.
$$
(f\circ g)(x) = f(g(x))
$$
!!! warning
Composition is not commutative: $f\circ g \neq g\circ f$.
## Inverse functions
The inverse of a function swaps the domain and range of the original function: $f^{-1}(x)$ is the inverse of $f(x)$.. It can be determined by solving for the other variable:
$$
\begin{align*}
y&=mx+b \\
y-b&=mx \\
x&=\frac{y-b}{m}
\end{align*}
$$
Because the domain and range are simply swapped, the inverse function is just the original function reflected across the line $y=x$.
<img src="https://upload.wikimedia.org/wikipedia/commons/1/11/Inverse_Function_Graph.png" width=300>(Source: Wikimedia Commons, public domain)</img>
If the inverse of a function is applied to the original function, the original value is returned.
$$f^{-1}(f(x)) = x$$
A function is **invertible** only if it is "**one-to-one**": each output must have exactly one input. This can be tested via a horizontal line test of the original function.
If a function is not invertible, restricting the domain may allow a **partial inverse** to be defined.
!!! example
<img src="https://upload.wikimedia.org/wikipedia/commons/7/70/Inverse_square_graph.svg">(Source: Wikimedia Commons, public domain)</img>
By restricting the domain to $[0,\inf]$, the **multivalued inverse function** $y=\pm\sqrt{x}$ is reduced to just the partial inverse $y=\sqrt{x}$.
## Symmetry
An **even function** satisfies the property that $f(x)=f(-x)$, indicating that it is unchanged by a reflection across the y-axis.
An **odd function** satisfies the property that $-f(x)=f(-x)$, indicating that it is unchanged by a 180° rotation about the origin.
The following properties are always true for even and odd functions:
- even × even = even
- odd × odd = even
- even × odd = odd
Functions that are symmetric (that is, both $f(x)$ and $f(-x)$ exist) can be split into an even and odd component. Where $g(x)$ is the even component and $h(x)$ is the odd component:
$$
\begin{align*}
f(x) &= g(x) + h(x) \\
g(x) &= \frac{1}{2}(f(x) + f(-x)) \\
h(x) &= \frac{1}{2}(f(x) - f(-x))
\end{align*}
$$
!!! note
The hyperbolic sine and cosine are the even and odd components of $f(x)=e^x$.
$$
\cosh x = \frac{1}{2}(e^x + e^{-x}) \\
\sinh x = \frac{1}{2}(e^x - e^{-x})
$$