308 lines
9.5 KiB
Markdown
308 lines
9.5 KiB
Markdown
# MATH 117: Calculus 1
|
||
|
||
## Functions
|
||
|
||
A **function** is a rule where each input has exactly one output, which can be determined by the **vertical line test**.
|
||
|
||
!!! definition
|
||
- The **domain** is the set of allowable independent values.
|
||
- The **range** is the set of allowable dependent values.
|
||
|
||
Functions can be **composed** to apply the result of one function to another.
|
||
$$
|
||
(f\circ g)(x) = f(g(x))
|
||
$$
|
||
|
||
!!! warning
|
||
Composition is not commutative: $f\circ g \neq g\circ f$.
|
||
|
||
## Inverse functions
|
||
|
||
The inverse of a function swaps the domain and range of the original function: $f^{-1}(x)$ is the inverse of $f(x)$.. It can be determined by solving for the other variable:
|
||
$$
|
||
\begin{align*}
|
||
y&=mx+b \\
|
||
y-b&=mx \\
|
||
x&=\frac{y-b}{m}
|
||
\end{align*}
|
||
$$
|
||
|
||
Because the domain and range are simply swapped, the inverse function is just the original function reflected across the line $y=x$.
|
||
|
||
<img src="https://upload.wikimedia.org/wikipedia/commons/1/11/Inverse_Function_Graph.png" width=300>(Source: Wikimedia Commons, public domain)</img>
|
||
|
||
If the inverse of a function is applied to the original function, the original value is returned.
|
||
$$f^{-1}(f(x)) = x$$
|
||
|
||
A function is **invertible** only if it is "**one-to-one**": each output must have exactly one input. This can be tested via a horizontal line test of the original function.
|
||
|
||
If a function is not invertible, restricting the domain may allow a **partial inverse** to be defined.
|
||
|
||
!!! example
|
||
<img src="https://upload.wikimedia.org/wikipedia/commons/7/70/Inverse_square_graph.svg">(Source: Wikimedia Commons, public domain)</img>
|
||
By restricting the domain to $[0,\inf]$, the **multivalued inverse function** $y=\pm\sqrt{x}$ is reduced to just the partial inverse $y=\sqrt{x}$.
|
||
|
||
## Symmetry
|
||
An **even function** satisfies the property that $f(x)=f(-x)$, indicating that it is unchanged by a reflection across the y-axis.
|
||
|
||
An **odd function** satisfies the property that $-f(x)=f(-x)$, indicating that it is unchanged by a 180° rotation about the origin.
|
||
|
||
The following properties are always true for even and odd functions:
|
||
|
||
- even × even = even
|
||
- odd × odd = even
|
||
- even × odd = odd
|
||
|
||
Functions that are symmetric (that is, both $f(x)$ and $f(-x)$ exist) can be split into an even and odd component. Where $g(x)$ is the even component and $h(x)$ is the odd component:
|
||
$$
|
||
\begin{align*}
|
||
f(x) &= g(x) + h(x) \\
|
||
g(x) &= \frac{1}{2}(f(x) + f(-x)) \\
|
||
h(x) &= \frac{1}{2}(f(x) - f(-x))
|
||
\end{align*}
|
||
$$
|
||
|
||
!!! note
|
||
The hyperbolic sine and cosine are the even and odd components of $f(x)=e^x$.
|
||
$$
|
||
\cosh x = \frac{1}{2}(e^x + e^{-x}) \\
|
||
\sinh x = \frac{1}{2}(e^x - e^{-x})
|
||
$$
|
||
|
||
## Piecewise functions
|
||
|
||
A piecewise function is one that changes formulae at certain intervals. To solve piecewise functions, each of one's intervals should be considered.
|
||
|
||
### Absolute value function
|
||
|
||
$$
|
||
\begin{align*}
|
||
|x| = \begin{cases}
|
||
x &\text{ if } x\geq 0 \\
|
||
-x &\text{ if } x < 0
|
||
\end{cases}
|
||
\end{align*}
|
||
$$
|
||
|
||
### Signum function
|
||
|
||
The signum function returns the sign of its argument.
|
||
|
||
$$
|
||
\begin{align*}
|
||
\text{sgn}(x)=\begin{cases}
|
||
-1 &\text{ if } x < 0 \\
|
||
0 &\text{ if } x = 0 \\
|
||
1 &\text{ if } x > 0
|
||
\end{cases}
|
||
\end{align*}
|
||
$$
|
||
|
||
### Ramp function
|
||
|
||
The ramp function makes a ramp through the origin that suddenly flatlines at 0. Where $c$ is a constant:
|
||
|
||
$$
|
||
\begin{align*}
|
||
r(t)=\begin{cases}
|
||
0 &\text{ if } x \leq 0 \\
|
||
ct &\text{ if } x > 0
|
||
\end{cases}
|
||
\end{align*}
|
||
$$
|
||
|
||
<img src="https://upload.wikimedia.org/wikipedia/commons/c/c9/Ramp_function.svg" width=700>(Source: Wikimedia Commons, public domain)</img>
|
||
|
||
### Floor and ceiling functions
|
||
|
||
The floor function rounds down.
|
||
$$\lfloor x\rfloor$$
|
||
|
||
The ceiling function rounds up.
|
||
$$\lceil x \rceil$$
|
||
|
||
### Fractional part function
|
||
|
||
In a nutshell, the fractional part function:
|
||
|
||
- returns the part **after the decimal point** if the number is positive
|
||
- returns 1 - **the part after the decimal point** if the number is negative
|
||
|
||
$$\text{FRACPT}(x) = x-\lfloor x\rfloor$$
|
||
|
||
Because this function is periodic, it can be used to limit angles to the $[0, 2\pi)$ range with:
|
||
$$f(\theta) = 2\pi\cdot\text{FRACPT}\biggr(\frac{\theta}{2\pi}\biggr)$$
|
||
|
||
### Heaviside function
|
||
|
||
The Heaviside function effectively returns a boolean whether the number is greater than 0.
|
||
$$
|
||
\begin{align*}
|
||
H(x) = \begin{cases}
|
||
0 &\text{ if } t < 0 \\
|
||
1 &\text{ if } t \geq 0
|
||
\end{cases}
|
||
\end{align*}
|
||
$$
|
||
|
||
This can be used to construct other piecewise functions by enabling them with $H(x-a)$ as a factor, where $a$ is the interval.
|
||
|
||
In a nutshell:
|
||
|
||
- $1-H(t-a)$ lets you "turn a function off" at at $t=a$
|
||
- $H(t-a)$ lets you "turn a function on at $t=a$
|
||
- $H(t-a) - H(t-b)$ leaves a function on in the interval $(a, b)$
|
||
|
||
!!! example
|
||
TODO: example for converting piecewise to heaviside via collecting heavisides
|
||
|
||
and vice versa
|
||
|
||
## Periodicity
|
||
|
||
The function $f(t)$ is periodic only if there is a repeating pattern, i.e. such that for every $x$, there is an $f(x) = f(x + nT)$, where $T$ is the period and $n$ is any integer.
|
||
|
||
### Circular motion
|
||
|
||
Please see [SL Physics 1#6.1 - Circular motion](/g11/sph3u7/#61-circular-motion) and its subcategory "Angular thingies" for more information.
|
||
|
||
## Partial function decomposition (PFD)
|
||
|
||
In order to PFD:
|
||
|
||
1. Factor the denominator into *irreducibly* quadratic or linear terms.
|
||
2. For each factor, create a term. Where capital letters below are constants:
|
||
- A linear factor $Bx+C$ has a term $\frac{A}{Bx+C}$.
|
||
- An *irreducibly* quadratic factor $Dx^2+Ex+G$ has a term $\frac{Hx+J}{Dx^2+Ex+G}$.
|
||
- Duplicate factors have terms with denominators with that factor to the power of 1 up to the number of times the factor is present in the original.
|
||
4. Set the two equal to each other such that the denominators can be factored out.
|
||
5. Create systems of equations to solve for each constant.
|
||
|
||
!!! example
|
||
To decompose $\frac{x}{(x+1)(x^2+x+1)}$:
|
||
$$
|
||
\begin{align*}
|
||
\frac{x}{(x+1)(x^2+x+1)} &= \frac{A}{x+1} + \frac{Bx+C}{x^2+x+1} \\
|
||
&= \frac{A(x^2+x+1) + (Bx+C)(x+1)}{(x+1)(x^2+x+1)} \\
|
||
x &= A(x^2+x+1) + (Bx+C)(x+1) \\
|
||
0x^2 + x + 0 &= (Ax^2 + Bx^2) + (Ax + Bx + Cx) + (A + C) \\
|
||
\\
|
||
&\begin{cases}
|
||
0 = A + B \\
|
||
1 = A + B + C \\
|
||
0 = A + C
|
||
\end{cases}
|
||
\\
|
||
A &= -1 \\
|
||
B &= 1 \\
|
||
C &= 1 \\
|
||
\\
|
||
∴ \frac{x}{(x+1)(x^2+x+1)} &= -\frac{1}{x+1} + \frac{x + 1}{x^2 + x + 1}
|
||
\end{align*}
|
||
$$
|
||
|
||
## Trigonometry
|
||
|
||
1 radian represents the angle when the length of the arc of a circle is equal to the radius. Where $s$ is the arc length:
|
||
|
||
$$\theta=\frac{s}{r}$$
|
||
|
||
The following table indicates the special angles that should be memorised:
|
||
|
||
| Angle (rad) | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | $\pi$ |
|
||
| --- | --- | --- | --- | --- | --- | --- |
|
||
| cos | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | 0 | -1 |
|
||
| sin | 0 | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1 | 0 |
|
||
| tan | 0 | $\frac{\sqrt{3}}{3}$ | 1 | $\sqrt{3}$ | not allowed | 0 |
|
||
|
||
### Identities
|
||
|
||
The Pythagorean identity is the one behind right angle triangles:
|
||
|
||
$$\cos^2\theta+\sin^2\theta = 1$$
|
||
|
||
Cosine and sine can be converted between by an angle shift:
|
||
|
||
$$
|
||
\cos\biggr(\theta-\frac{\pi}{2}\biggr) = \sin\theta \\
|
||
\sin\biggr(\theta-\frac{\pi}{2}\biggr) = \cos\theta
|
||
$$
|
||
|
||
The **angle sum identities** allow expanding out angles:
|
||
|
||
$$
|
||
\cos(a+b)=\cos a\cos b - \sin a\sin b \\
|
||
\sin(a+b)=\sin a\cos b + \cos a\sin b
|
||
$$
|
||
|
||
Subtracting angles is equal to the conjugates of the angle sum identities.
|
||
|
||
The **double angle identities** simplify the angle sum identity for a specific case.
|
||
|
||
$$
|
||
\sin2\theta = 2\sin\theta\cos\theta \\
|
||
$$
|
||
|
||
The **half angle formulas** are just random shit.
|
||
|
||
$$
|
||
1+\tan^2\theta = \sec^2\theta \\
|
||
\cos^2\theta = \frac{1}{2}(1+\cos2\theta) \\
|
||
\sin^2\theta = \frac{1}{2}(1-\cos2\theta)
|
||
$$
|
||
|
||
### Inverse trig functions
|
||
|
||
Because extending the domain does not pass the horizontal line test, for engineering purposes, inverse sine is only the inverse of sine so long as the angle is within $[-\frac{\pi}{2}, \frac{\pi}{2}]$. Otherwise, it is equal to that version mod 2 pi.
|
||
|
||
$$y=\sin^{-1}x \iff x=\sin y, y\in [-\frac{\pi}{2}, \frac{\pi}{2}]$$
|
||
|
||
This means that $x\in[-1, 1]$.
|
||
|
||
$$
|
||
\sin(\sin^{-1}x) = x \\
|
||
\sin^{-1}(\sin x) = x \text{ only if } x\in[-\frac{\pi}{2}, \frac{\pi}{2}]
|
||
$$
|
||
|
||
Similarly, inverse **cosine** only returns values within $[0,\pi]$.
|
||
|
||
Similarly, inverse **tangent** only returns values within $(-\frac{\pi}{2}, \frac{\pi}{2})$. However, $\tan^{-1}$ is defined for all $x\in\mathbb R$.
|
||
|
||
Although most of the reciprocal function rules can be derived, secant is only valid in the odd range $[-\pi, -\frac{\pi}{2})\cup [0, \frac{\pi}{2})$, and returns values $(-\infty, -1]\cup [1, \infty)$.
|
||
|
||
### Electrical signals
|
||
|
||
Waves are commonly presented in the following format, where $A$ is a **positive** amplitude:
|
||
|
||
$$g(t)=A\sin(\omega t + \alpha)$$
|
||
|
||
In general, if given a sum of a sine and cosine:
|
||
|
||
$$a\sin\omega t + b\cos\omega t = \sqrt{a^2 + b^2}\sin(\omega t + \alpha)$$
|
||
|
||
The sign of $\alpha$ should be determined via its quadrant via the signs of $a$ (sine) and $b$ (cosine) via the CAST rule.
|
||
|
||
!!! example
|
||
Given $y=5\cos 2t - 3\sin 2t$:
|
||
|
||
$$
|
||
\begin{align*}
|
||
A\sin (2t+\alpha) &= A\sin 2t\cos\alpha + A\cos 2t\sin\alpha \\
|
||
&= (A\cos\alpha)\sin 2t + (A\sin\alpha)\cos 2t \\
|
||
\\
|
||
\begin{cases}
|
||
A\sin\alpha = 5 \\
|
||
A\cos\alpha = -3
|
||
\end{cases}
|
||
\\
|
||
\\
|
||
A^2\sin^2\alpha + A^2\cos^2\alpha &= 5^2 + (-3)^2 \\
|
||
A^2 &= 34 \\
|
||
A &= \sqrt{34} \\
|
||
\\
|
||
\alpha &= \tan^{-1}\frac{5}{3} \\
|
||
&\text{since sine is positive and cosine is negative, the angle is in Q3} \\
|
||
∴ \alpha &= \tan^{-1}\frac{5}{3} + \pi
|
||
\end{align*}
|
||
$$
|