- Substances enter and exit the nucleus via `nuclear pores`. `Nuclear pores` are holes in the membrane that allow `proteins` and `nucleic acids` into the `cytoplasm`
- Produce "large" and "small" subunits of `ribosomes`, which either form complete `ribosomes` in `cytosol` or mix with `endoplasmic reticulum`, forming `rough endoplasmic reticulum` (RER)
- The endoplasmic reticulum is a network of `tubules` and **flattened sacs** with a <b>*rough*</b> appearance because of the presence of `ribosomes` on the surface
- Cells have maximum size before transportation of substances within cell becomes **inefficient**, due to **larger cells** decreasing efficiency of `diffusion`
- Cells transport chemicals (e.g., nutrients) via `diffusion`, this **limits cell size**
- The only way to maintain proper function and get bigger is to **add more cells**
### 3. Repair
- **Organisms need to repair cells to stay alive and maintain proper health**
| Prophase | <imgsrc="http://www.edupic.net/Images/Mitosis/prophase_3D.png"width="250"> | - Chromatin condenses into two identical `sister chromatids` which condense into `chromosomes`<br> - Happens to 23 pairs of chromosomes <br> - Nuclear membrane dissolves <br> - Centrosomes move to opposite ends (`poles`) of cell, creating `spindle fibres` that begin to attach to `centromeres` in animal cells |
| Metaphase | <imgsrc="http://www.edupic.net/Images/Mitosis/metaphase_3D.png"width="250"> | - Chromosomes line up in centre of cell to ensure they divide evenly <br> - Everything in prophase has completed (e.g., nuclear membrane has dissolved completely) |
| Anaphase | <imgsrc="http://www.edupic.net/Images/Mitosis/anaphase_3D.png"width="250"> | - Centromeres split, separating sister chromatids <br> - Sister chromatids are pulled towards opposite sides of cell via shortening spindle fibres <br> - Sister chromatids are now called `daughter chromomsomes` |
| Telophase | <imgsrc="http://www.edupic.net/Images/Mitosis/telophase_3D.png"width="250"> | - Effectively opposite of prophase <br> - Nuclear membranes form across each of the two new nuclei <br> - Daughter chromosomes unwind into chromatin and are no longer visible <br> - Nucleolus forms in each nucleus <br> - Spindle fibres break apart <br> - **Cytokinesis** usually begins in telophase <br> - Cells starts to **cleave** (cell centre starts to pinch itself) |
### Cytokinesis
- Cell division
- Cell splits completely to two daughter cells
- In **animal cells**: Cell membrane pulled inward by cytoskeleton
- **"Pinches in"** along equator of cell, forming **"cleavage furrow"**
- In **plant cells**: Golgi apparatus produces and sends vesicles to centre of plant cell **"cell plate"** to make new cell wall and membrane between daughter cells
| Type of Stem Cell | Obtaining | Potential | Pros | Cons |
| :--- | :--- | :--- |:--- | :--- |
| Totipotent | Morula (16-cell ball) 3-4 days after lab-fertilised zygote | Unlimited | Unlimited potential, does not initiate immune response | Ethical concerns of destroying fertilized embryos |
| Pluripotent | Blastocyst (200-300 cell ball) 4-7 days after fertilisation | Nearly unlimited | Nearly unlimited potential, no need to create new embryo as most are taken from discarded in vitro fertilisation | Ethical concerns of destroying embryos, greater chance of initiating immune response |
| Multipotent | Adult stem cells | Limited to cells of their group/organ/location (e.g., blood stem cells to red blood cells, white blood cells, etc.) | Easy to harvest, easy to find | Immune response, limited potential |
| Induced pluripotent | Multipotent stem cells | Reprogramming multipotent stem cells using embryonic genes using a virus | Same as pluripotent | Does not require new embryos, immune response not expected, high potential | Technology not there yet to make this possible |
### Potential uses of stem cells
- Studying cell growth and function
- Testing drugs on specific target cells
- Lab-grown meat for vegetarian purposes
- Regenerative medicine to replace tissues (e.g., blindness, bone marrow transplant, cancers, limb regrowth)