2019-11-13 09:55:07 -05:00
|
|
|
# Question 1
|
|
|
|
|
|
|
|
```math
|
2019-11-13 11:22:02 -05:00
|
|
|
|
|
|
|
\because \angle B^\prime = \angle B \quad (\text{Corresonding Line theorem}) \\
|
|
|
|
|
|
|
|
\because \angle C^\prime = \angle C \quad (\text{Corresponding Line theorem}) \\
|
|
|
|
|
|
|
|
\therefore \triangle AB^\prime C^\prime \sim \triangle ABC \quad (\text{ AA } \sim) \\ \\
|
|
|
|
|
|
|
|
\therefore \dfrac{AB^\prime}{B^\prime C^\prime} = \dfrac{AB}{BC} \\
|
|
|
|
|
|
|
|
\quad \\
|
|
|
|
|
|
|
|
|
|
|
|
\therefore \dfrac{30}{14} = \dfrac{30+x}{22} \\ \\
|
|
|
|
|
|
|
|
\quad \\
|
|
|
|
|
|
|
|
14(30+x) = 22(30) \\
|
|
|
|
|
|
|
|
\quad \\
|
|
|
|
|
|
|
|
x = \dfrac{22(30)}{14} - 30 \\
|
|
|
|
|
|
|
|
\quad \\
|
|
|
|
|
|
|
|
x = 17.1428571 \approx 17.14
|
|
|
|
```
|
|
|
|
|
|
|
|
```math
|
|
|
|
|
|
|
|
\dfrac{AC^\prime}{B^\prime C^\prime} = \dfrac{AC}{BC} \\
|
|
|
|
|
|
|
|
\quad \\
|
|
|
|
|
|
|
|
\dfrac{y}{14} = \dfrac{y+15}{22} \\
|
|
|
|
|
|
|
|
\quad \\
|
|
|
|
|
|
|
|
22y = 14y + 14(15) \\
|
|
|
|
|
|
|
|
8y = 14(15) \\
|
|
|
|
|
|
|
|
y = 26.25
|
2019-11-13 09:55:07 -05:00
|
|
|
|
|
|
|
```
|