1
0
mirror of https://gitlab.com/magicalsoup/Highschool.git synced 2025-01-23 16:11:46 -05:00

Update Unit 1: Essential Skills.md

This commit is contained in:
James Su 2019-09-04 23:51:15 +00:00
parent a7103d121f
commit 4bade7b132

View File

@ -5,21 +5,21 @@
### Addition / Subtraction
| Expression | Equivalent|
|:----------:|:---------:|
| a + b | a + b |
| (-a) + b | b - a |
| a + (-b) | a - b |
| (-a) + (-b) | -(a + b) |
| a - b | a - b|
| a - (-b) | a + b |
| (-a) -(-b) | (-a) + b|
| $`a + b`$ | $`a + b`$ |
| $`(-a) + b`$ | $`b - a`$ |
| $`a + (-b)`$ | $`a - b`$ |
| $`(-a) + (-b)`$ | $`-(a + b)`$ |
| $`a - b`$ | $`a - b`$|
| $`a - (-b)`$ | $`a + b`$ |
| $`(-a) -(-b)`$ | $`(-a) + b`$|
### Multiplication / Division
| Signs | Outcome |
|:-----:|:-------:|
| a * b | Positive |
| (-a) * b | Negative |
| a * (-b) | Negative |
| (-a) * (-b) | Positive |
| $`a \times b`$ | Positive |
| $`(-a) \times b`$ | Negative |
| $`a \times (-b)`$ | Negative |
| $`(-a) \times (-b)`$ | Positive |
### BEDMAS / PEMDAS
- Follow ```BEDMAS``` for order of operations if there are more than one operation
@ -37,7 +37,7 @@
## Interval Notation
- A notation that represents an interval as a pair of numbers.
- The numbers in the interval represent the endpoint. E.g. **[x > 3, x ∈ R]**
- The numbers in the interval represent the endpoint. E.g. $`[x > 3, x \isin R]`$
- ```|``` means ```such that```
- ```E``` or ∈ means ```element of```
- ```N``` represents **Natural Numbers** $`N = \{x | x \gt 0, x \isin \mathbb{Z} \}`$
@ -47,10 +47,10 @@
| Symbol | Meaning |
|:------:|:-------:|
| (a, b) | Between but not including ```a``` or ```b```, you also use this for ```∞``` |
| [a, b] | Inclusive |
| a b | Union (or) |
| a ∩ b | Intersection (and) |
| $`(a, b)`$ | Between but not including $`a`$ or $`b`$, you also use this for $`\infty`$|
| $`[a, b]`$ | Inclusive |
| $`a b`$ | Union (or) |
| $`a ∩ b`$ | Intersection (and) |
## Pythgorean Theorem
- a and b are the two legs of the triangle or two sides that form a 90 degree angle of the triangle, c is the hypotenuse
@ -71,32 +71,32 @@
### Example Simplify Fully:
- $` \frac{3}{4} \div \frac{2}{14} `$ Reduce to lowest terms
- $` \dfrac{3}{4} \div \dfrac{2}{14} `$ Reduce to lowest terms
- $` \frac{3}{4} \div \frac{1}{7} `$ Multiple by reciprocal
- $` \dfrac{3}{4} \div \dfrac{1}{7} `$ Multiple by reciprocal
- $` \frac{3}{4} \times 7 `$
- $` \dfrac{3}{4} \times 7 `$
- $` = \frac{21}{4}`$ Leave as improper fraction
- $` = \dfrac{21}{4}`$ Leave as improper fraction
### Shortcut for multiplying fractions
- cross divide to keep your numbers small
- Example:
- $` \frac{3}{4} \times \frac{2}{12} `$
- $` \dfrac{3}{4} \times \dfrac{2}{12} `$
- $` \frac{1}{2} \times \frac{1}{4} `$
- $` \dfrac{1}{2} \times \dfrac{1}{4} `$
- $` = \frac{1}{8} `$
- $` = \dfrac{1}{8} `$
## Exponent Laws
| Rule | Description| Example |
|:----:|:----------:|:-------:|
|Product|a<sup>m</sup> &times; a<sup>n</sup> = a<sup>n+m</sup>|2<sup>3</sup> &times; 2<sup>2</sup> = 2<sup>5</sup>|
|Quotient|a<sup>m</sup> &divide; a<sup>n</sup> = a<sup>n-m</sup>|3<sup>4</sup> &divide; 3<sup>2</sup> = 3<sup>2</sup>|
|Power of a Power|(a<sup>m</sup>)<sup>n</sup> = a<sup>mn</sup>|(2<sup>3</sup>)<sup>2</sup> = 2<sup>6</sup>|
|Product|$`a^m \times a^n = a^{n+m}`$|$`2^3 \times 2^2 = 2^5`$|
|Quotient|$`a^m \divide a^n = a^{n-m}`$|$`3^4 \divide 3^2 = 3^2`$|
|Power of a Power|$`(a^m)^n = a^mn`$|$`(2^3)^2 = 2^6`$|
|Power of a Quotient|<img src="http://latex2png.com/output//latex_9528cf1be9ea781a9134559f27f6b94b.png" width="25"> = <img src="http://latex2png.com/output//latex_8c4a93634d0e2f5cfce05b474ebf2f02.png" width="15">|<img src="http://latex2png.com/output//latex_74d1af968da0b70a335c8d93273635e9.png" width="25"> = <img src="http://latex2png.com/output//latex_2040cef99eca664c295bd74848f0779f.png" width="15">|
|Zero as Exponents|a<sup>0</sup> = 1|21<sup>0</sup> = 1|
|Negative Exponents|a<sup>-m</sup> = <img src="http://latex2png.com/output//latex_0223494d8dd45b887178dcecbbfeb462.png" width="20">|1<sup>-10</sup> = <img src="http://latex2png.com/output//latex_4765f9318cc4813f30321334b18635eb.png" width="20">|