mirror of
https://gitlab.com/magicalsoup/Highschool.git
synced 2025-02-02 12:51:46 -05:00
Update Analytical Geometry.md
This commit is contained in:
parent
281240e81e
commit
7f92d20206
@ -73,4 +73,177 @@ $`\therefore`$ The `orthocenter` is at $`(\dfrac{5}{4}, 2)`$
|
||||
|
||||
### Question 2 a)
|
||||
|
||||
midpoint = $`\large (\dfrac{\sqrt{72} + \sqrt{32}}{2}, \dfrac{-\sqrt{12} - \sqrt{48}}{2} \large )`$
|
||||
midpoint = $` (\dfrac{\sqrt{72} + \sqrt{32}}{2}, \dfrac{-\sqrt{12} - \sqrt{48}}{2} )`$
|
||||
|
||||
$` = ( \dfrac{6\sqrt{2} + 4\sqrt{2}}{2}, \dfrac{-2\sqrt{3}, -4\sqrt{3}}{2}) `$
|
||||
|
||||
$` = 3\sqrt{2} + 2\sqrt{2}, -\sqrt{3 - 2\sqrt{3}`$
|
||||
|
||||
$` = (5\sqrt{2}, -3\sqrt{3})`$
|
||||
|
||||
$`\therefore`$ The midpoint is at $`(5 \sqrt{2}, -3\sqrt{3})`$
|
||||
|
||||
### Question 2 b)
|
||||
|
||||
Center of mass = centroid.
|
||||
|
||||
Centroid = where all median lines of a trinagle intersect.
|
||||
|
||||
$`M_{AB} = (\dfrac{8+12}{2}, \dfrac{12+4}{2}) = (10, 8)`$
|
||||
|
||||
$`m_{M_{AB} C} = \dfrac{8-8}{10-2} = 0`$
|
||||
|
||||
$`y_{M_{AB} C} = 8 \quad (1)`$
|
||||
|
||||
$`M_{BC} = (\dfrac{12+2}{2}, {8+4}{2}) = (7, 6)`$
|
||||
|
||||
$`m_{M_{BC} A} = \dfrac{6-12}{7-8} = 6`$
|
||||
|
||||
$`y_{M_{BC}A} - 12 = 6(x-8)`$
|
||||
|
||||
$`y_{M_{BC}A} = 6x - 48 +12`$
|
||||
|
||||
$`y_{M_{BC}A} = 6x - 36 \quad (2)`$
|
||||
|
||||
```math
|
||||
\begin{cases}
|
||||
|
||||
y_{M_{BC} A} = 8 & \text{(1)} \\
|
||||
|
||||
y_{M_{BC} A} = 6x - 36 & \text{(2)} \\
|
||||
|
||||
\end{cases}
|
||||
```
|
||||
|
||||
Sub $`(1)`$ into $`(2)`$
|
||||
|
||||
$`8 = 6x - 36`$
|
||||
|
||||
$`6x = 44`$
|
||||
|
||||
$`x = \dfrac{44}{6} = \dfrac{22}{3} \quad (3)`$
|
||||
|
||||
By $`(1)`$, $`y=8`$.
|
||||
|
||||
$`\therefore`$ The centroid is at $`(\dfrac{22}{3}, 8)`$
|
||||
|
||||
### Question 3
|
||||
|
||||
Shortest distance = straight perpendicular line that connets $`A`$ to a point on line $`\overline{GH}`$
|
||||
|
||||
$`M_{GH} = \dfrac{42+30}{38 + 16} = \dfrac{72}{54} = \dfrac{4}{3}`$
|
||||
|
||||
$`M_{\perp GH} = \dfrac{-3}{4}`$
|
||||
|
||||
$`y_{\perp GH} - 32 = \dfrac{-3}{4}(x+16)`$
|
||||
|
||||
$`y_{\perp GH} = \dfrac{-3}{4}x + 20 \quad (1)`$
|
||||
|
||||
$`y_{GH} + 30 = \dfrac{4}{3}(x+16)`$
|
||||
|
||||
$`y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} \quad (2)`$
|
||||
|
||||
```math
|
||||
\begin{cases}
|
||||
|
||||
y_{\perp GH} = \dfrac{-3}{4}x + 20 & \text{(1)} \\
|
||||
|
||||
\\
|
||||
|
||||
y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} & \text{(2}) \\
|
||||
\end{cases}
|
||||
```
|
||||
|
||||
Sub $`(1)`$ into $`(2)`$
|
||||
|
||||
$`\dfrac{-3}{4}x + 20 = \dfrac{4}{3}x - \dfrac{26}{3}`$
|
||||
|
||||
$`-9x + (12)20 = 16x - 4(26)`$
|
||||
|
||||
$`25x = 344`$
|
||||
|
||||
$`x = \dfrac{344}{25} \quad (3)`$
|
||||
|
||||
Sub $`(3)`$ into $`(1)`$
|
||||
|
||||
$`y = \dfrac{-3}{4}(\dfrac{344}{25}) + 20`$
|
||||
|
||||
$`y = \dfrac{-258}{25} + 20`$
|
||||
|
||||
$`y = \dfrac{-257}{25} + \dfrac{500}{25}`$
|
||||
|
||||
$`y = {242}{25}`$
|
||||
|
||||
Distance $`= \sqrt{(-16-\dfrac{344}{25})^2 + (32 - \dfrac{242}{25})^2} = 37.2`$
|
||||
|
||||
$`\therefore`$ The shortest length pipe is $`37.2`$ units.
|
||||
|
||||
|
||||
### Question 4
|
||||
|
||||
Let $`(x, y)`$ be the center of the circle, and $`r`$ be the radius of the circle.
|
||||
|
||||
|
||||
```math
|
||||
\begin{cases}
|
||||
(x-4)^2 + (y-8)^2 = r^2 & \text{(1)} \\
|
||||
|
||||
(x-5)^2 + (y-1)^2 = r^2 & \text{(2)} \\
|
||||
|
||||
(x+2)^2 + y^2 = r^2 & \text{(3)} \\
|
||||
|
||||
\end{cases}
|
||||
```
|
||||
|
||||
Sub $`(1)`$ into $`(2)`$
|
||||
|
||||
$`x^2 + 8x + 16 + y^2 - 16y + 64 = x^2 - 10x + 25 + y^2 -2y + 1`$
|
||||
|
||||
$`-8x -16y + 80 = -10x - 2y + 26`$
|
||||
|
||||
$`2x - 14y = -54`$
|
||||
|
||||
$`x - 7y = -27 \quad (4)`$
|
||||
|
||||
Sub $`(2)`$ into $`(3)`$
|
||||
|
||||
$`x^2 + 10x + 25 + y^2 - 2y + 1 = x^2 + 4x + 4 + y^2`$
|
||||
|
||||
$`10x - 2y +26 = 4x + 4`$
|
||||
|
||||
$`14x + 2y = 22`$
|
||||
|
||||
$`7x + y = 11`$
|
||||
|
||||
$`y = 11 - 7x \quad (5)`$
|
||||
|
||||
Sub $`(5)`$ into $`(4)`$
|
||||
|
||||
$`x - 7(11-7x) = -27`$
|
||||
|
||||
$`x - 77+ 49x = 27`$
|
||||
|
||||
$`50x = 50`$
|
||||
|
||||
$`x = 1 \quad (6)`$
|
||||
|
||||
Sub $`(6)`$ into $`(5)`$
|
||||
|
||||
$`y = 11 - 7(1)`$
|
||||
|
||||
$`y = 4 \quad (7)`$
|
||||
|
||||
Sub $`(6), (7)`$ into $`(3)`$
|
||||
|
||||
$`(1+2)^2 + 4^2 = r^2`$
|
||||
|
||||
$`r^2 = 16 + 9`$
|
||||
|
||||
$`r^2 = 25`$
|
||||
|
||||
$`\therefore (x-1)^2 + (y-4)^2 = 25`$ is the equation of the circle.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user