1
0
mirror of https://gitlab.com/magicalsoup/Highschool.git synced 2025-02-02 21:01:46 -05:00

Update Unit 4: Trigonometry.md

This commit is contained in:
James Su 2019-11-25 21:26:56 +00:00
parent ab90b7fc84
commit 91d06419d7

View File

@ -1,3 +1,5 @@
# Unit 4: Trigonometry
## Angle Theorems
1. ```Transversal Parallel Line Theorems``` (TPT)
@ -55,12 +57,18 @@
If three sides of a triangle are respectively equal to the three sides of another triangle, then the triangles are congruent
<img src="https://media.cheggcdn.com/study/51f/51f6fea6-a0df-4da9-ad5c-f9663291a22f/DC-2411V1.png" width="500">
### Side-Angle-Side (SAS)
If two sides and the **contained** angle of a triangle are respectively equal to two sides and the **contained** angle of another triangle, then the triangles are congruent.
<img src="https://dr282zn36sxxg.cloudfront.net/datastreams/f-d%3A77ca1d4d5a96259729f68cffe461702e9c92b5abb6018335683fa888%2BIMAGE_TINY%2BIMAGE_TINY.1" width="300">
### Angle-Side-Angle (ASA)
If two angles and the **contained** side of a triangle are respectively equal to two angles and the **contained** side of another triangle, then the triangles are congruent.
<img src="https://www.onlinemath4all.com/images/trianglecongruenceandsimilarity4.png" width="500">
## Similary Triangles
`Similar`: Same shape but different sizes (one is an enlargement of the other)
@ -83,10 +91,101 @@ our big triangle's area is equal to $`\dfrac{k^2bh}{2}`$. Similar equations and
Three pairs of corresponding sides are in the **same ratio**
<img src="https://dr282zn36sxxg.cloudfront.net/datastreams/f-d%3Ac6e3b786fdc6105d64b086efcfa48c529b91cbb087f6ba3bc60b9f9f%2BIMAGE_TINY%2BIMAGE_TINY.1" width="500">
### Side Angle Side similarity (RAR $`\sim`$)
Two pairs of corresponding sides are proportional and the **contained** angle are equal.
<img src="https://dr282zn36sxxg.cloudfront.net/datastreams/f-d%3A3c5ec26759a40dc1d524b1c5af8864d5e87135063ce6f4e75d37af4d%2BIMAGE_TINY%2BIMAGE_TINY.1" width="500">
### Angle-Angle similarity (AA $`\sim`$)
Two pairs of corresponding angles are equal.
Two pairs of corresponding angles are equal. In the diagram below, we can solve for the missing angle using Angle Sum Of A Triangle Theorem (ASTT) and see that those 2 triangle's angles are equal.
<img src="https://www.onlinemath4all.com/images/angleanglesimilarity2.png" width="500">
## Primary Trigonometry Ratios
|Part Of Triangle|Property|
|:---------------|:-------|
|Hypotenuse|The longest side of the right triangle. it is across the $`90^o`$ (right angle)|
|Opposite|The side opposite to the reference angle|
|Adjacent|The side next to the reference agnle|
**Remember**: Primary Trigonometry ratios are only used to find the **acute** angles or sides of a **right-angled** triangle
### SOH CAH TOA
**SINE** $`\sin \theta = \dfrac{\text{Opposite}}{\text{Hypotenuse}}`$
**COSINE** $`\cos \theta = \dfrac{\text{Adajacent}}{\text{Hypotenuse}}`$
**TANGENT** $`\tan \theta = \dfrac{\text{Opposite}}{\text{Adajacent}}`$
## Angle Of Elevation And Depression
| |Angle of Elevation|Angle of Depression|
|:---------|:-----------------|:------------------|
|Definition|**Angle of Elevation** is the angle from the horizontal looking **up** to some object|**Angle of Depression** is the angle frorm the horizontal looking **down** to some object|
|Diagram|<img src="https://www.varsitytutors.com/assets/vt-hotmath-legacy/hotmath_help/topics/angle-of-elevation/angle-of-elevation-image001.gif" width="300">|<img src="https://www.varsitytutors.com/assets/vt-hotmath-legacy/hotmath_help/topics/angle-of-elevation/angle-of-elevation-image002.gif" width="300">|
We can see that **Angle of Elevation = Angle of Depression** in the diagram below (Proven using Z-pattern)
<img src="https://www.varsitytutors.com/assets/vt-hotmath-legacy/hotmath_help/topics/angle-of-elevation/angle-of-elevation-image003.gif" width="300">
## Sine Law
In any $`\triangle ABC`$: $`\dfrac{\sin A}{a} = \dfrac{\sin B}{b} = \dfrac{\sin C}{c}`$ or $`\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C}`$
We can derive the formula further to get:
- $`\dfrac{\sin A}{\sin B} = \dfrac{a}{b}`$
- $`\dfrac{\sin A}{\sin C} = \dfrac{a}{c}`$
- $`\dfrac{\sin B}{\sin C} = \dfrac{b}{c}`$
Also, for some trigonometry identities:
- $`\tan x = \dfrac{\sin x}{\cos x}`$
- $`\sin^2 A + \cos^2 A = 1`$
**If you are finding the sides or agnles of an `oblique triangle` given 1 side, its opposite angle and one other side or angle, use the sine law.**
### Ambiguous Case
The ambiguous case arises in the SSA or (ASS) case of an triangle, when you are given angle side side. The sine law calculation may need to 0, 1, or 2 solutions.
In the ambigouous case, if $`\angle A, a, b`$ are given, the height of the triangle is $`h= b\sin A`$
|Case|If $`\angle A`$ is **acute**|Condition|# & Type of triangles possible|
|:---|:---------------------------|:--------|:-----------------------------|
|1 |<img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSQfCqnJUFFQ9UQHoYT-CXd614RTXNGL_R5QNomKDCaDV3Nja4g&s" width="200">|$`a \lt h`$|no triangle exists|
|2 |<img src="https://www.analyzemath.com/Triangle/sine_law_2.gif" width="300">|$`a = h`$|one triangle exists|
|3 |<img src="http://www.technologyuk.net/mathematics/trigonometry/images/trigonometry_0078.gif" width="300">|$`h \lt a \lt b`$|two triangle exist (one acute triangle, one obtuse triangle)|
|4 |<img src="http://jwilson.coe.uga.edu/EMT668/EMAT6680.2001/Mealor/EMAT%206700/law%20of%20sines/Law%20of%20Sines%20ambiguous%20case/image3.gif" width="300">|$`a \ge b`$|one triangle exists|
|Case|If $`\angle A`$ is **obtuse**|Condition|# & Type of triangles possible|
|:---|:----------------------------|:--------|:-----------------------------|
|5 |<img src="http://jwilson.coe.uga.edu/EMT668/EMAT6680.2001/Mealor/EMAT%206700/law%20of%20sines/Law%20of%20Sines%20ambiguous%20case/image5.gif" width="200">|$`a \le b`$|no triangle exists|
|6 |<img src="http://www.gradeamathhelp.com/image-files/ambiguous-case-side-length.gif" width="200">|$`a \gt b`$|one triangle exists|
## Cosine Law
In any $`\triangle ABC`$, $`c^2 = a^2 + b^2 - 2ab\cose C`$
**If you are given 3 sides or 2 sides and the contained angle of an `oblique triangle`, then use the consine law**
## Directions
`Bearins`: **Always** start from **North**, and goes **clockwise**
`Direction`: Start from the first letter (N, E, S, W), and go that many degrees to the second letter (N, E, S, W)
**Note:** Northeast, Southeast, NorthWest etc. all have 45 degrees to the left or the right from their starting degree (0, 90, 180, 270)
## 2D Problems
**Note:** Watch out for the case where you don't know which side the 2 things (buildings, boats etc) are, they can result in 2 answers
## 3D problems
**Note:** Use angle theorems to find bearing/direction angle, and to help with the problem in general. Apply sine law, cosine law, and primary trigonometry ratios whenever necessary.