mirror of
https://gitlab.com/magicalsoup/Highschool.git
synced 2025-01-26 01:11:46 -05:00
119 lines
2.0 KiB
Markdown
119 lines
2.0 KiB
Markdown
## Analytical Geometry Part 2
|
|
|
|
### Question 3
|
|
|
|
Shortest distance = straight perpendicular line that connets $`A`$ to a point on line $`\overline{GH}`$
|
|
|
|
$`M_{GH} = \dfrac{42+30}{38 + 16} = \dfrac{72}{54} = \dfrac{4}{3}`$
|
|
|
|
$`M_{\perp GH} = \dfrac{-3}{4}`$
|
|
|
|
$`y_{\perp GH} - 32 = \dfrac{-3}{4}(x+16)`$
|
|
|
|
$`y_{\perp GH} = \dfrac{-3}{4}x + 20 \quad (1)`$
|
|
|
|
$`y_{GH} + 30 = \dfrac{4}{3}(x+16)`$
|
|
|
|
$`y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} \quad (2)`$
|
|
|
|
```math
|
|
\begin{cases}
|
|
|
|
y_{\perp GH} = \dfrac{-3}{4}x + 20 & \text{(1)} \\
|
|
|
|
\\
|
|
|
|
y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} & \text{(2}) \\
|
|
\end{cases}
|
|
```
|
|
|
|
Sub $`(1)`$ into $`(2)`$
|
|
|
|
$`\dfrac{-3}{4}x + 20 = \dfrac{4}{3}x - \dfrac{26}{3}`$
|
|
|
|
$`-9x + (12)20 = 16x - 4(26)`$
|
|
|
|
$`25x = 344`$
|
|
|
|
$`x = \dfrac{344}{25} \quad (3)`$
|
|
|
|
Sub $`(3)`$ into $`(1)`$
|
|
|
|
$`y = \dfrac{-3}{4}(\dfrac{344}{25}) + 20`$
|
|
|
|
$`y = \dfrac{-258}{25} + 20`$
|
|
|
|
$`y = \dfrac{-258}{25} + \dfrac{500}{25}`$
|
|
|
|
$`y = \dfrac{242}{25}`$
|
|
|
|
Distance $`= \sqrt{(-16-\dfrac{344}{25})^2 + (32 - \dfrac{242}{25})^2} = 37.2`$
|
|
|
|
$`\therefore`$ The shortest length pipe is $`37.2`$ units.
|
|
|
|
|
|
### Question 4
|
|
|
|
Let $`(x, y)`$ be the center of the circle, and $`r`$ be the radius of the circle.
|
|
|
|
|
|
```math
|
|
\begin{cases}
|
|
(x-4)^2 + (y-8)^2 = r^2 & \text{(1)} \\
|
|
|
|
(x-5)^2 + (y-1)^2 = r^2 & \text{(2)} \\
|
|
|
|
(x+2)^2 + y^2 = r^2 & \text{(3)} \\
|
|
|
|
\end{cases}
|
|
```
|
|
|
|
Sub $`(1)`$ into $`(2)`$
|
|
|
|
$`x^2 - 8x + 16 + y^2 - 16y + 64 = x^2 - 10x + 25 + y^2 -2y + 1`$
|
|
|
|
$`-8x -16y + 80 = -10x - 2y + 26`$
|
|
|
|
$`2x - 14y = -54`$
|
|
|
|
$`x - 7y = -27 \quad (4)`$
|
|
|
|
Sub $`(2)`$ into $`(3)`$
|
|
|
|
$`x^2 - 10x + 25 + y^2 - 2y + 1 = x^2 + 4x + 4 + y^2`$
|
|
|
|
$`-10x - 2y +26 = 4x + 4`$
|
|
|
|
$`14x + 2y = 22`$
|
|
|
|
$`7x + y = 11`$
|
|
|
|
$`y = 11 - 7x \quad (5)`$
|
|
|
|
Sub $`(5)`$ into $`(4)`$
|
|
|
|
$`x - 7(11-7x) = -27`$
|
|
|
|
$`x - 77+ 49x = 27`$
|
|
|
|
$`50x = 50`$
|
|
|
|
$`x = 1 \quad (6)`$
|
|
|
|
Sub $`(6)`$ into $`(5)`$
|
|
|
|
$`y = 11 - 7(1)`$
|
|
|
|
$`y = 4 \quad (7)`$
|
|
|
|
Sub $`(6), (7)`$ into $`(3)`$
|
|
|
|
$`(1+2)^2 + 4^2 = r^2`$
|
|
|
|
$`r^2 = 16 + 9`$
|
|
|
|
$`r^2 = 25`$
|
|
|
|
$`\therefore (x-1)^2 + (y-4)^2 = 25`$ is the equation of the circle.
|
|
|