1
0
mirror of https://gitlab.com/magicalsoup/Highschool.git synced 2025-01-24 00:21:45 -05:00
highschool/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Analytical Geometry.md

1.8 KiB

Analytical Geometry

Question 1 a)

Lets first find each of the side lengths to determine if the triangle is obtuse, acute or scalene.

\(`\overline{AB} = \sqrt{(-1-7)^2 + (5-2)^2} = \sqrt{64 + 9} = \sqrt{73}`\)

\(`\overline{BC} = \sqrt{(7-(-1))^2 + (2-(-4))^2} = \sqrt{64 + 36} = \sqrt{100} = 10`\)

\(`\overline{AC} = \sqrt{(-1-(-1))^2 + (5-(-4))^2} = \sqrt{0^2 + 9^2} = \sqrt{81} = 9`\)

\(`\because \overline{AB} =\not \overline{BC} =\not \overline{AC}`\)

\(`\therefore \triangle ABC`\) is a scalene triangle.

Question 1 b)

The orthocenter is the POI of the heights of a triangle.

\(`m_{AB} = \dfrac{2-5}{7-(-1)} = \dfrac{-3}{8}`\)

\(`m_{\perp AB} = \dfrac{8}{3}`\)

\(`y_{\perp AB} - (-4) = \dfrac{8}{3}(x - (-1)) \implies y_{perp AB} + 4 = \dfrac{8}{3}(x+1)`\)

\(`y_{\perp AB} = \dfrac{8}{3}x + \dfrac{8}{3} - 4`\)

\(` y_{\perp AB} = \dfrac{8}{3}x - \dfrac{4}{3} \quad (1)`\)

\(`m_{BC} = \dfrac{2-(-4)}{7-(-1)} = \dfrac{6}{8} = \dfrac{3}{4}`\)

\(`m_{\perp BC} = \dfrac{-4}{3}`\)

\(`y_{\perp BC} - 5 = \dfrac{-4}{3}(x-(-1)) \implies y_{\perp BC} - 5 = \dfrac{-4}{3}(x+1)`\)

\(`y_{\perp BC} = \dfrac{-4}{3}x - \dfrac{4}{3} + 5`\)

\(`y_{\perp BC} = \dfrac{-4}{3}x + \dfrac{11}{3}`\)


\begin{cases}

y_{\perp AB} = \dfrac{8}{3}x - \dfrac{4}{3} & \text{(1)} \\

\\ 
y_{\perp BC} = \dfrac{-4}{3}x + \dfrac{11}{3} & \text{(2)} \\
\end{cases}

Sub \(`(1)`\) into \(`(2)`\):

\(`\dfrac{8}{3}x - \dfrac{4}{3} = \dfrac{-4}{3} + \dfrac{11}{3}`\)

\(`8x - 4 = -4x + 11`\)

\(`12x = 15`\)

\(`x = \dfrac{5}{4} \quad (3)`\)

Sub \(`(3)`\) into \(`(2)`\)

\(`y = \dfrac{-20}{12} + \dfrac{11}{3}`\)

\(`y = \dfrac{-5}{3} + \dfrac{11}{3}`\)

\(`y = \dfrac{6}{3} = 2`\)

\(`y = 2`\)

\(`\therefore`\) The orthocenter is at \(`(\dfrac{5}{4}, 2)`\)

Question 2 a)

midpoint = \(`\large (\dfrac{\sqrt{72} + \sqrt{32}}{2}, \dfrac{-\sqrt{12} - \sqrt{48}}{2} \large )`\)