1
0
mirror of https://gitlab.com/magicalsoup/Highschool.git synced 2025-05-17 08:01:47 -04:00
highschool/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 1: Analytical Geometry Part 2.md

2.0 KiB

Analytical Geometry Part 2

Question 3

Shortest distance = straight perpendicular line that connets A`A` to a point on line GH`\overline{GH}`

MGH=42+3038+16=7254=43`M_{GH} = \dfrac{42+30}{38 + 16} = \dfrac{72}{54} = \dfrac{4}{3}`

MGH=34`M_{\perp GH} = \dfrac{-3}{4}`

yGH32=34(x+16)`y_{\perp GH} - 32 = \dfrac{-3}{4}(x+16)`

yGH=34x+20(1)`y_{\perp GH} = \dfrac{-3}{4}x + 20 \quad (1)`

yGH+30=43(x+16)`y_{GH} + 30 = \dfrac{4}{3}(x+16)`

yGH=43x263(2)`y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} \quad (2)`

\begin{cases}

y_{\perp GH} = \dfrac{-3}{4}x + 20 & \text{(1)} \\

\\

y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} & \text{(2}) \\
\end{cases}

Sub (1)`(1)` into (2)`(2)`

34x+20=43x263`\dfrac{-3}{4}x + 20 = \dfrac{4}{3}x - \dfrac{26}{3}`

9x+(12)20=16x4(26)`-9x + (12)20 = 16x - 4(26)`

25x=344`25x = 344`

x=34425(3)`x = \dfrac{344}{25} \quad (3)`

Sub (3)`(3)` into (1)`(1)`

y=34(34425)+20`y = \dfrac{-3}{4}(\dfrac{344}{25}) + 20`

y=25825+20`y = \dfrac{-258}{25} + 20`

y=25825+50025`y = \dfrac{-258}{25} + \dfrac{500}{25}`

y=24225`y = \dfrac{242}{25}`

Distance =(1634425)2+(3224225)2=37.2`= \sqrt{(-16-\dfrac{344}{25})^2 + (32 - \dfrac{242}{25})^2} = 37.2`

`\therefore` The shortest length pipe is 37.2`37.2` units.

Question 4

Let (x,y)`(x, y)` be the center of the circle, and r`r` be the radius of the circle.

\begin{cases}
(x-4)^2 + (y-8)^2 = r^2 & \text{(1)} \\

(x-5)^2 + (y-1)^2 = r^2 & \text{(2)} \\

(x+2)^2 + y^2 = r^2 & \text{(3)} \\

\end{cases}

Sub (1)`(1)` into (2)`(2)`

x28x+16+y216y+64=x210x+25+y22y+1`x^2 - 8x + 16 + y^2 - 16y + 64 = x^2 - 10x + 25 + y^2 -2y + 1`

8x16y+80=10x2y+26`-8x -16y + 80 = -10x - 2y + 26`

2x14y=54`2x - 14y = -54`

x7y=27(4)`x - 7y = -27 \quad (4)`

Sub (2)`(2)` into (3)`(3)`

x210x+25+y22y+1=x2+4x+4+y2`x^2 - 10x + 25 + y^2 - 2y + 1 = x^2 + 4x + 4 + y^2`

10x2y+26=4x+4`-10x - 2y +26 = 4x + 4`

14x+2y=22`14x + 2y = 22`

7x+y=11`7x + y = 11`

y=117x(5)`y = 11 - 7x \quad (5)`

Sub (5)`(5)` into (4)`(4)`

x7(117x)=27`x - 7(11-7x) = -27`

x77+49x=27`x - 77+ 49x = 27`

50x=50`50x = 50`

x=1(6)`x = 1 \quad (6)`

Sub (6)`(6)` into (5)`(5)`

y=117(1)`y = 11 - 7(1)`

y=4(7)`y = 4 \quad (7)`

Sub (6),(7)`(6), (7)` into (3)`(3)`

(1+2)2+42=r2`(1+2)^2 + 4^2 = r^2`

r2=16+9`r^2 = 16 + 9`

r2=25`r^2 = 25`

(x1)2+(y4)2=25`\therefore (x-1)^2 + (y-4)^2 = 25` is the equation of the circle.