1
0
mirror of https://gitlab.com/magicalsoup/Highschool.git synced 2025-01-23 16:11:46 -05:00
highschool/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 1: Analytical Geometry Part 2.md

2.0 KiB

Analytical Geometry Part 2

Question 3

Shortest distance = straight perpendicular line that connets \(`A`\) to a point on line \(`\overline{GH}`\)

\(`M_{GH} = \dfrac{42+30}{38 + 16} = \dfrac{72}{54} = \dfrac{4}{3}`\)

\(`M_{\perp GH} = \dfrac{-3}{4}`\)

\(`y_{\perp GH} - 32 = \dfrac{-3}{4}(x+16)`\)

\(`y_{\perp GH} = \dfrac{-3}{4}x + 20 \quad (1)`\)

\(`y_{GH} + 30 = \dfrac{4}{3}(x+16)`\)

\(`y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} \quad (2)`\)

\begin{cases}

y_{\perp GH} = \dfrac{-3}{4}x + 20 & \text{(1)} \\

\\

y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} & \text{(2}) \\
\end{cases}

Sub \(`(1)`\) into \(`(2)`\)

\(`\dfrac{-3}{4}x + 20 = \dfrac{4}{3}x - \dfrac{26}{3}`\)

\(`-9x + (12)20 = 16x - 4(26)`\)

\(`25x = 344`\)

\(`x = \dfrac{344}{25} \quad (3)`\)

Sub \(`(3)`\) into \(`(1)`\)

\(`y = \dfrac{-3}{4}(\dfrac{344}{25}) + 20`\)

\(`y = \dfrac{-258}{25} + 20`\)

\(`y = \dfrac{-258}{25} + \dfrac{500}{25}`\)

\(`y = \dfrac{242}{25}`\)

Distance \(`= \sqrt{(-16-\dfrac{344}{25})^2 + (32 - \dfrac{242}{25})^2} = 37.2`\)

\(`\therefore`\) The shortest length pipe is \(`37.2`\) units.

Question 4

Let \(`(x, y)`\) be the center of the circle, and \(`r`\) be the radius of the circle.

\begin{cases}
(x-4)^2 + (y-8)^2 = r^2 & \text{(1)} \\

(x-5)^2 + (y-1)^2 = r^2 & \text{(2)} \\

(x+2)^2 + y^2 = r^2 & \text{(3)} \\

\end{cases}

Sub \(`(1)`\) into \(`(2)`\)

\(`x^2 - 8x + 16 + y^2 - 16y + 64 = x^2 - 10x + 25 + y^2 -2y + 1`\)

\(`-8x -16y + 80 = -10x - 2y + 26`\)

\(`2x - 14y = -54`\)

\(`x - 7y = -27 \quad (4)`\)

Sub \(`(2)`\) into \(`(3)`\)

\(`x^2 - 10x + 25 + y^2 - 2y + 1 = x^2 + 4x + 4 + y^2`\)

\(`-10x - 2y +26 = 4x + 4`\)

\(`14x + 2y = 22`\)

\(`7x + y = 11`\)

\(`y = 11 - 7x \quad (5)`\)

Sub \(`(5)`\) into \(`(4)`\)

\(`x - 7(11-7x) = -27`\)

\(`x - 77+ 49x = 27`\)

\(`50x = 50`\)

\(`x = 1 \quad (6)`\)

Sub \(`(6)`\) into \(`(5)`\)

\(`y = 11 - 7(1)`\)

\(`y = 4 \quad (7)`\)

Sub \(`(6), (7)`\) into \(`(3)`\)

\(`(1+2)^2 + 4^2 = r^2`\)

\(`r^2 = 16 + 9`\)

\(`r^2 = 25`\)

\(`\therefore (x-1)^2 + (y-4)^2 = 25`\) is the equation of the circle.