1
0
mirror of https://gitlab.com/magicalsoup/Highschool.git synced 2025-01-24 00:21:45 -05:00
highschool/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Quadratic Equations.md

5.4 KiB

Question 1 a)

The zeroes of a quadratic equation are the solutions of \(`x`\) when \(`ax^2+bx+c = 0`\). The roots of the quadratic equation is when \(`(x + r_1)(x + r_2) = 0`\), more commonly described by the formula \(`\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}`\). Therefore the roots of a quadratic equation are also the zeroes of the quadratic equation.

Question 1 b)

\(`D = b^2 - 4ac`\)

If \(`D=0`\), there is one zero.

\(`\therefore n^2 - 4(1)(4) = 0`\)

\(`n^2 - 16 = 0`\)

\(`(n+4)(n-4) = 0`\)

\(`n = \pm 4`\)

Question 1 c)

Let \(`h`\) be the height and \(`b`\) be the base. \(`h = 2b + 4`\).

\(`\therefore (2b+4)(b) = 168(2)`\)

\(`4b^2 + 8b = 168(2)`\)

\(`b^2 + 2b = 84 = 0`\)

\(`b = \dfrac{-2 \pm \sqrt{4+4(84)}`\)

\(`b = \dfrac{-2 \pmm \sqrt{340}}{2}`\)

\(`b = -1 + \sqrt{85}`\)

Question 2 a)

If the quadratic is in \(`ax^2 + bx + c`\), the AOS (axis of symmetry) is at \(`\dfrac{-b}{2a}`\). And you can plug that value into the quadratic equation to get your optimal value, which is:

\(`= a(\dfrac{-b}{2a})^2 + b(\dfrac{-b}{2a}) + c`\)

\(`= \dfrac{b^2}{4a} + \dfrac{-b^2}{2a} + c`\)

\(`= \dfrac{-b^2}{4a} + c`\)

Question 2 b)

\(`2x^2 + 5x - 1 = 0`\)

\(`2(x^2 + \dfrac{5}{2}x + (\dfrac{5}{4})^2 - (\dfrac{5}{4})^2) - 1 = 0`\)

\(`2(x+\dfrac{5}{4})^2 - \dfrac{25}{8} - 1 = 0`\)

\(`2(x+ \dfrac{5}{4})^2 - \dfrac{33}{8} = 0`\)

\(`(x+ \dfrac{5}{4})^2 = \dfrac{33}{16}`\)

\(`x = \pm \sqrt{\dfrac{33}{16}} - \dfrac{5}{4}`\)

\(`x = \dfrac{\pm \sqrt{33}}{4} - \dfrac{5}{4}`\)

\(`x = \dfrac{\sqrt{33}-5}{4}`\) or \(`\dfrac{-\sqrt{33} - 5}{4}`\)

Question 2 c)

Let \(`w`\) be the width between the path and flowerbed, \(`x`\) be the length of the whole rectangle and \(`y`\) be the whole rectangle (flowerbed + path).

\(`x = 9+2w`\)

\(`y = 6+2w`\)

\(`(6+2w)(9+2w) - (6)(9 = (6)(9)`\)

\(`54 + 12w + 18w + 4w^2 = 2(54)`\)

\(`4w^2 + 30w = 54`\)

\(`2w^2 + 15w - 27 = 0`\)

\(`2 \quad \quad -3`\)

\(`1 \quad \quad 9`\)

\(`(2w-3)(w+9) = 0`\)

\(`w = \dfrac{3}{2}, -9`\)

\(`\because w \gt 0`\)

\(`\therefore w = \dfrac{3}{2}`\)

\(`\therefore x = 9+3 = 12`\)

\(`\therefore y = 6+3 = 9`\)

\(`P = 2(x + y) \implies P = 2(12+9) \implies P = 42`\)

\(`\therefore`\) The perimeter is \(`42m`\)

Question 3 a)

Use discriminant, where \(`D = b^2 - 4ac`\).

\begin{cases}

\text{If } D \gt 0 & \text{Then there are 2 real distinct solutions} \\

\text{If } D = 0 & \text{Then there is 1 real solution} \\

\text{If } D \lt 0 &\text{Then there are no real solutions} \\

\end{cases}

Question 3 b)

\(`y = 12x^2 - 5x - 2`\)

\(`3 \quad \quad -2`\)

\(`4 \quad \quad 1`\)

\(`y = (3x-2)(4x+1)`\)

\(`\therefore`\) The \(`x`\)-intercepts are at \(`\dfrac{2}{3}, \dfrac{-1}{4}`\)

Question 3 c)

When \(`P(x) = 0`\), that means it is the break-even point for a value of \(`x`\) (no profit, no loss). \(`2k^2 + 12k - 10 = 0 \implies k^2 -6k + 5 = 0`\)

\(`(k-5)(k-1) = 0`\)

\(`k = 5, 1`\)

Either \(`5000`\) or \(`1000`\) rings must be produced so that there is no prodift and no less.

AOS (axis of symmetry) = \(`\dfrac{-b}{2a} = \dfrac{6}{2} = 3`\)

\(`\therefore 3000`\) rings should be made to achieve the optimal value.

Maximum profit \(`= -2(3)^2 + 12(3) - 10`\)

\(`= -18 + 30 - 10`\)

\(` = 8`\)

\(`\therefore 8000`\) dollars is the maximum profit.

Question 4 a)

\(`5x(x-1) + 5 = 7 + x(1-2x)`\)

\(`5x^2 - 5x = 2 + x - 2x^2`\)

\(`7x^2 - 6x - 2 = 0`\)

\(`x = \dfrac{6 \pm \sqrt{92}}{14}`\)

\(`x = \dfrac{3 \pm \sqrt{23}}{7}`\)

Question 4 b).

\(`\because \dfrac{1}{3}`\) and \(`\dfrac{-2}{3}`\) are the roots of a quadratic equation, that must mean that \(`(x-\dfrac{1}{3})(x-\dfrac{2}{3})`\) is a quadratic equation that gives those roots.

After expanind we get:

\(`y = x^2 - \dfrac{2}{3}x - \dfrac{1}{3}x + \dfrac{2}{3}`\)

\(`y = x^2 - x + \dfrac{2}{3}`\)

Now we complete the square.

\(`y = x^2 - x + (\dfrac{1}{2})^2 - (\dfrac{1}{2})^2 + \dfrac{2}{3}`\)

\(`y = (x-\dfrac{1}{2})^2 - \dfrac{1}{4} + \dfrac{2}{3}`\)

\(`y = (x-\dfrac{1}{2})^2 + \dfrac{5}{12}`\)

Qustion 4 c)

When \(`h = 0`\), the ball hits ground, so:

\(`-3.2t^2 + 12.8 + 1 = 0`\)

\(`t = \dfrac{-12.8 \pm \sqrt{12.8^2 - 4(3.2)}}{-6.4}`\)

\(`t = \dfrac{12.8 \pm \sqrt{151.04}}{6.4}`\)

\(`\because t \ge 0`\)

\(`\therefore t = \dfrac{12.8 \pm sqrt{151.04}}{6.4}`\)

\(`\therefore t \approx 3.9`\)

The ball will strike the ground at approximately \(`3.9`\) seconds.

Question 5 a)

\(`128 = 96t - 16t^2`\)

\(`16t^2 - 96t + 128 = 0`\)

\(`t^2 - 6t + 8 = 0`\)

\(`1 \quad \quad -2`\)

\(`1 \quad \quad -4`\)

\(`(t-2)(t-4)`\), at seconds \(`2`\) and \(`4`\), the rocket reaches \(`128m`\).

Question 5 b)

Break even is when revenue = cost.

\(`\therefore R(d) = C(d)`\)

\(`-40d^2 + 200d = 300 - 40d`\)

\(`40d^2 - 240d + 300 = 0`\)

\(`4d^2 - 24d + 30 = 0`\)

\(`2d^2 - 12d + 15 = 0`\)

\(`d = \dfrac{12 \pm \sqrt{24}}{4}`\)

\(`d = \dfrac{6 \pm \sqrt{6}}{2}`\)

At \(`d = 4.22474407`\) or \(`1.775255135`\) is when you break even.

Question 5 c)

Let the quation be \(`y = a(x-d)^2 + c`\)

Since we know that that \(`(0, 0)`\) and \(`(6, 0)`\) are the roots of this equation, the AOS is when \(`x = 3`\)

\(`\therefore y = a(x-3)^2 + c`\).

Since we know that \(`(0, 0)`\) is a point on the parabola, we can susbsitute it into our equation.

\(`0 = 9a + c \quad (1)`\)

Since we know that \(`(4, 5)`\) is also a point on the parabola, we can susbsitute it int our equation as well.

\(`5 = a + c \quad (2)`\)


\begin{cases}

9a + c = 0 & \text{(1)} \\

a + c = 5 & \text{(2)} \\

\end{cases}

\(`(2) - (1)`\)

\(`-8a = 5 \implies a = \dfrac{-5}{8} \quad (3)`\)

Sub \(`3`\) into \(`(2)`\):

\(`5 = \dfrac{-5}{8} + c \implies c = \dfrac{45}{8}`\)

\(`\therefore`\) Our equation is \(`y = \dfrac{-5}{8}(x-3)^2 + \dfrac{45}{8}`\)