1
0
mirror of https://gitlab.com/magicalsoup/Highschool.git synced 2025-01-24 00:21:45 -05:00
highschool/Grade 9/Math/MPM1DZ/Unit 1: Essential Skills.md

140 lines
6.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Unit 1: Essential Skills
## Simple Arithmetics
### Addition / Subtraction
| Expression | Equivalent|
|:----------:|:---------:|
| $`a + b`$ | $`a + b`$ |
| $`(-a) + b`$ | $`b - a`$ |
| $`a + (-b)`$ | $`a - b`$ |
| $`(-a) + (-b)`$ | $`-(a + b)`$ |
| $`a - b`$ | $`a - b`$|
| $`a - (-b)`$ | $`a + b`$ |
| $`(-a) -(-b)`$ | $`(-a) + b`$|
### Multiplication / Division
| Signs | Outcome |
|:-----:|:-------:|
| $`a \times b`$ | Positive |
| $`(-a) \times b`$ | Negative |
| $`a \times (-b)`$ | Negative |
| $`(-a) \times (-b)`$ | Positive |
### BEDMAS / PEMDAS
- Follow ```BEDMAS``` for order of operations if there are more than one operation
| Letter | Meaning |
|:------:|:-------:|
| B / P | Bracket / Parentheses |
| E | Exponent |
| D | Divison |
| M | Multiplication |
| A | Addition |
| S | Subtraction |
- <img src="https://ecdn.teacherspayteachers.com/thumbitem/Order-of-Operations-PEMDAS-Poster-3032619-1500876016/original-3032619-1.jpg" width="300">
## Interval Notation
- A notation that represents an interval as a pair of numbers.
- The numbers in the interval represent the endpoint. E.g. $`[x > 3, x \isin R]`$
- ```|``` means ```such that```
- ```E``` or &isin; means ```element of```
- ```N``` represents **Natural Numbers** $`N = \{x | x \gt 0, x \isin \mathbb{Z} \}`$
- ```W``` represents **Whole Numbers** $`W = \{x | x \ge 0, x \isin \mathbb{Z}\}`$
- ```Z``` represents **Integers** $`Z = \{x| -\infin \le x \le \infin, x \isin \mathbb{Z}\}`$
- ```Q``` represents **Rational Numbers** $`Q = \{ \frac{a}{b} |a, b \isin \mathbb{Z}, b \neq 0 \}`$
| Symbol | Meaning |
|:------:|:-------:|
| $`(a, b)`$ | Between but not including $`a`$ or $`b`$, you also use this for $`\infty`$|
| $`[a, b]`$ | Inclusive |
| $`a b`$ | Union (or) |
| $`a ∩ b`$ | Intersection (and) |
## Pythgorean Theorem
- a and b are the two legs of the triangle or two sides that form a 90 degree angle of the triangle, c is the hypotenuse
- $`a^2+b^2=c^2`$
- <img src="http://www.justscience.in/wp-content/uploads/2017/05/Pythagorean-Theorem.jpeg" width="400">
## Operations with Rationals
- $`Q = \{ \frac{a}{b} |a, b \isin \mathbb{Z}, b \neq 0 \}`$
- Any operations with rationals, there are 2 sets of rules
1. ```Rules for operations with integers```
2. ```Rules for operations with fractions```
- To Add / subtract rationals, find common denominator and then add / subtract numerator
- To Multiply rationals, first reduce the fraction to their lowest terms, then multiply numerators and denominators
- To Divide rationals, multiply them by the reciprocal
### Example Simplify Fully:
- $` \dfrac{3}{4} \div \dfrac{2}{14} `$ Reduce to lowest terms
- $` \dfrac{3}{4} \div \dfrac{1}{7} `$ Multiple by reciprocal
- $` \dfrac{3}{4} \times 7 `$
- $` = \dfrac{21}{4}`$ Leave as improper fraction
### Shortcut for multiplying fractions
- cross divide to keep your numbers small
- Example:
- $` \dfrac{3}{4} \times \dfrac{2}{12} `$
- $` \dfrac{1}{2} \times \dfrac{1}{4} `$
- $` = \dfrac{1}{8} `$
## Exponent Laws
| Rule | Description| Example |
|:----:|:----------:|:-------:|
|Product|$`a^m \times a^n = a^{n+m}`$|$`2^3 \times 2^2 = 2^5`$|
|Quotient|$`a^m \divide a^n = a^{n-m}`$|$`3^4 \divide 3^2 = 3^2`$|
|Power of a Power|$`(a^m)^n = a^mn`$|$`(2^3)^2 = 2^6`$|
|Power of a Quotient|<img src="http://latex2png.com/output//latex_9528cf1be9ea781a9134559f27f6b94b.png" width="25"> = <img src="http://latex2png.com/output//latex_8c4a93634d0e2f5cfce05b474ebf2f02.png" width="15">|<img src="http://latex2png.com/output//latex_74d1af968da0b70a335c8d93273635e9.png" width="25"> = <img src="http://latex2png.com/output//latex_2040cef99eca664c295bd74848f0779f.png" width="15">|
|Zero as Exponents|a<sup>0</sup> = 1|21<sup>0</sup> = 1|
|Negative Exponents|a<sup>-m</sup> = <img src="http://latex2png.com/output//latex_0223494d8dd45b887178dcecbbfeb462.png" width="20">|1<sup>-10</sup> = <img src="http://latex2png.com/output//latex_4765f9318cc4813f30321334b18635eb.png" width="20">|
|Rational Exponents|a<sup>n/m</sup> = <img src="http://latex2png.com/output//latex_33a019fd887e207917a831e5b5fd20e5.png" width="50">|<img src="http://latex2png.com/output//latex_af91e3845b91443f5fcf11fcf59368d3.png" width = "35"> = <img src="http://latex2png.com/output//latex_33a019fd887e207917a831e5b5fd20e5.png" width="50">|
**Note:**
- Exponential Form --> Expanded Form
- 6<sup>4</sup> = 6 &times; 6 &times; 6 &times; 6
## Scientific Notation
- They convey accuracy and precision. It can either be written as its original number or in scientific notation:
- 555 (**Exact**) or $`5.55 \times 10^2`$ (**3 significant figures**).
- In scientific notation, values are written in the form $`a(10^n)`$, where $`a`$ is a number within 1 and 10 and $`n`$ is any integer.
- Some examples include the following: $`5.4 \times 10^3, 3.0 \times 10^2`$, and $`4.56 \times 10^{-4}`$.
- When the number is smaller than 1, a negative exponent is used, when the number is bigger than 10, a positve exponent is used
- <img src="https://embedwistia-a.akamaihd.net/deliveries/d2de1eb00bafe7ca3a2d00349db23a4117a8f3b8.jpg?image_crop_resized=960x600" width="500">
- **Remember**: For scientific notation, round to ```3 significant``` digits
## Rates, Ratio and Percent
- ```Ratio```: A comparison of quantities with the same unit. These are to be reduced to lowest terms.
- Examples: ```a:b, a:b:c, a/b, a to b ```
- ```Rates```: A comparison of quantities expressed in different units.
- Example: ```10km/hour```
- ```Percent```: A fraction or ratio in which the denominator is 100
- Examples: ```50%, 240/100```
## Number Lines
- a line that goes from a point to another point, a way to visualize set notations and the like
- <img src="https://i2.wp.com/mathblog.wpengine.com/wp-content/uploads/2017/03/numberlines-thumbnail.jpeg?resize=573%2C247&ssl=1" width="500">
- A solid filled dot is used for ```[]``` and a empty dot is used for ```()```
## Tips
- Watch out for the ```+/-``` signs
- Make sure to review your knowledge of the exponent laws
- For scientific notation, watch out for the decimal point
- Use shortcut when multiplying fractions