mirror of
https://gitlab.com/magicalsoup/Highschool.git
synced 2025-01-24 16:41:45 -05:00
250 lines
4.7 KiB
Markdown
250 lines
4.7 KiB
Markdown
## Analytical Geometry
|
|
|
|
### Question 1 a)
|
|
|
|
Lets first find each of the side lengths to determine if the triangle is **obtuse**, **acute** or scalene.
|
|
|
|
$`\overline{AB} = \sqrt{(-1-7)^2 + (5-2)^2} = \sqrt{64 + 9} = \sqrt{73}`$
|
|
|
|
$`\overline{BC} = \sqrt{(7-(-1))^2 + (2-(-4))^2} = \sqrt{64 + 36} = \sqrt{100} = 10`$
|
|
|
|
$`\overline{AC} = \sqrt{(-1-(-1))^2 + (5-(-4))^2} = \sqrt{0^2 + 9^2} = \sqrt{81} = 9`$
|
|
|
|
$`\because \overline{AB} =\not \overline{BC} =\not \overline{AC}`$
|
|
|
|
$`\therefore \triangle ABC`$ is a scalene triangle.
|
|
|
|
### Question 1 b)
|
|
|
|
The `orthocenter` is the POI of the heights of a triangle.
|
|
|
|
$`m_{AB} = \dfrac{2-5}{7-(-1)} = \dfrac{-3}{8}`$
|
|
|
|
$`m_{\perp AB} = \dfrac{8}{3}`$
|
|
|
|
$`y_{\perp AB} - (-4) = \dfrac{8}{3}(x - (-1)) \implies y_{perp AB} + 4 = \dfrac{8}{3}(x+1)`$
|
|
|
|
$`y_{\perp AB} = \dfrac{8}{3}x + \dfrac{8}{3} - 4`$
|
|
|
|
$` y_{\perp AB} = \dfrac{8}{3}x - \dfrac{4}{3} \quad (1)`$
|
|
|
|
$`m_{BC} = \dfrac{2-(-4)}{7-(-1)} = \dfrac{6}{8} = \dfrac{3}{4}`$
|
|
|
|
$`m_{\perp BC} = \dfrac{-4}{3}`$
|
|
|
|
$`y_{\perp BC} - 5 = \dfrac{-4}{3}(x-(-1)) \implies y_{\perp BC} - 5 = \dfrac{-4}{3}(x+1)`$
|
|
|
|
$`y_{\perp BC} = \dfrac{-4}{3}x - \dfrac{4}{3} + 5`$
|
|
|
|
$`y_{\perp BC} = \dfrac{-4}{3}x + \dfrac{11}{3}`$
|
|
|
|
```math
|
|
|
|
\begin{cases}
|
|
|
|
y_{\perp AB} = \dfrac{8}{3}x - \dfrac{4}{3} & \text{(1)} \\
|
|
|
|
\\
|
|
y_{\perp BC} = \dfrac{-4}{3}x + \dfrac{11}{3} & \text{(2)} \\
|
|
\end{cases}
|
|
```
|
|
|
|
Sub $`(1)`$ into $`(2)`$:
|
|
|
|
$`\dfrac{8}{3}x - \dfrac{4}{3} = \dfrac{-4}{3} + \dfrac{11}{3}`$
|
|
|
|
$`8x - 4 = -4x + 11`$
|
|
|
|
$`12x = 15`$
|
|
|
|
$`x = \dfrac{5}{4} \quad (3)`$
|
|
|
|
Sub $`(3)`$ into $`(2)`$
|
|
|
|
$`y = \dfrac{-20}{12} + \dfrac{11}{3}`$
|
|
|
|
$`y = \dfrac{-5}{3} + \dfrac{11}{3}`$
|
|
|
|
$`y = \dfrac{6}{3} = 2`$
|
|
|
|
$`y = 2`$
|
|
|
|
$`\therefore`$ The `orthocenter` is at $`(\dfrac{5}{4}, 2)`$
|
|
|
|
### Question 2 a)
|
|
|
|
midpoint = $` (\dfrac{\sqrt{72} + \sqrt{32}}{2}, \dfrac{-\sqrt{12} - \sqrt{48}}{2} )`$
|
|
|
|
$` = ( \dfrac{6\sqrt{2} + 4\sqrt{2}}{2}, \dfrac{-2\sqrt{3}, -4\sqrt{3}}{2}) `$
|
|
|
|
$` = 3\sqrt{2} + 2\sqrt{2}, -\sqrt{3} - 2\sqrt{3}`$
|
|
|
|
$` = (5\sqrt{2}, -3\sqrt{3})`$
|
|
|
|
$`\therefore`$ The midpoint is at $`(5 \sqrt{2}, -3\sqrt{3})`$
|
|
|
|
### Question 2 b)
|
|
|
|
Center of mass = centroid.
|
|
|
|
Centroid = where all median lines of a trinagle intersect.
|
|
|
|
$`M_{AB} = (\dfrac{8+12}{2}, \dfrac{12+4}{2}) = (10, 8)`$
|
|
|
|
$`m_{M_{AB} C} = \dfrac{8-8}{10-2} = 0`$
|
|
|
|
$`y_{M_{AB} C} = 8 \quad (1)`$
|
|
|
|
$`M_{BC} = (\dfrac{12+2}{2}, {8+4}{2}) = (7, 6)`$
|
|
|
|
$`m_{M_{BC} A} = \dfrac{6-12}{7-8} = 6`$
|
|
|
|
$`y_{M_{BC}A} - 12 = 6(x-8)`$
|
|
|
|
$`y_{M_{BC}A} = 6x - 48 +12`$
|
|
|
|
$`y_{M_{BC}A} = 6x - 36 \quad (2)`$
|
|
|
|
```math
|
|
\begin{cases}
|
|
|
|
y_{M_{BC} A} = 8 & \text{(1)} \\
|
|
|
|
y_{M_{BC} A} = 6x - 36 & \text{(2)} \\
|
|
|
|
\end{cases}
|
|
```
|
|
|
|
Sub $`(1)`$ into $`(2)`$
|
|
|
|
$`8 = 6x - 36`$
|
|
|
|
$`6x = 44`$
|
|
|
|
$`x = \dfrac{44}{6} = \dfrac{22}{3} \quad (3)`$
|
|
|
|
By $`(1)`$, $`y=8`$.
|
|
|
|
$`\therefore`$ The centroid is at $`(\dfrac{22}{3}, 8)`$
|
|
|
|
### Question 3
|
|
|
|
Shortest distance = straight perpendicular line that connets $`A`$ to a point on line $`\overline{GH}`$
|
|
|
|
$`M_{GH} = \dfrac{42+30}{38 + 16} = \dfrac{72}{54} = \dfrac{4}{3}`$
|
|
|
|
$`M_{\perp GH} = \dfrac{-3}{4}`$
|
|
|
|
$`y_{\perp GH} - 32 = \dfrac{-3}{4}(x+16)`$
|
|
|
|
$`y_{\perp GH} = \dfrac{-3}{4}x + 20 \quad (1)`$
|
|
|
|
$`y_{GH} + 30 = \dfrac{4}{3}(x+16)`$
|
|
|
|
$`y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} \quad (2)`$
|
|
|
|
```math
|
|
\begin{cases}
|
|
|
|
y_{\perp GH} = \dfrac{-3}{4}x + 20 & \text{(1)} \\
|
|
|
|
\\
|
|
|
|
y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} & \text{(2}) \\
|
|
\end{cases}
|
|
```
|
|
|
|
Sub $`(1)`$ into $`(2)`$
|
|
|
|
$`\dfrac{-3}{4}x + 20 = \dfrac{4}{3}x - \dfrac{26}{3}`$
|
|
|
|
$`-9x + (12)20 = 16x - 4(26)`$
|
|
|
|
$`25x = 344`$
|
|
|
|
$`x = \dfrac{344}{25} \quad (3)`$
|
|
|
|
Sub $`(3)`$ into $`(1)`$
|
|
|
|
$`y = \dfrac{-3}{4}(\dfrac{344}{25}) + 20`$
|
|
|
|
$`y = \dfrac{-258}{25} + 20`$
|
|
|
|
$`y = \dfrac{-257}{25} + \dfrac{500}{25}`$
|
|
|
|
$`y = {242}{25}`$
|
|
|
|
Distance $`= \sqrt{(-16-\dfrac{344}{25})^2 + (32 - \dfrac{242}{25})^2} = 37.2`$
|
|
|
|
$`\therefore`$ The shortest length pipe is $`37.2`$ units.
|
|
|
|
|
|
### Question 4
|
|
|
|
Let $`(x, y)`$ be the center of the circle, and $`r`$ be the radius of the circle.
|
|
|
|
|
|
```math
|
|
\begin{cases}
|
|
(x-4)^2 + (y-8)^2 = r^2 & \text{(1)} \\
|
|
|
|
(x-5)^2 + (y-1)^2 = r^2 & \text{(2)} \\
|
|
|
|
(x+2)^2 + y^2 = r^2 & \text{(3)} \\
|
|
|
|
\end{cases}
|
|
```
|
|
|
|
Sub $`(1)`$ into $`(2)`$
|
|
|
|
$`x^2 - 8x + 16 + y^2 - 16y + 64 = x^2 - 10x + 25 + y^2 -2y + 1`$
|
|
|
|
$`-8x -16y + 80 = -10x - 2y + 26`$
|
|
|
|
$`2x - 14y = -54`$
|
|
|
|
$`x - 7y = -27 \quad (4)`$
|
|
|
|
Sub $`(2)`$ into $`(3)`$
|
|
|
|
$`x^2 - 10x + 25 + y^2 - 2y + 1 = x^2 + 4x + 4 + y^2`$
|
|
|
|
$`-10x - 2y +26 = 4x + 4`$
|
|
|
|
$`14x + 2y = 22`$
|
|
|
|
$`7x + y = 11`$
|
|
|
|
$`y = 11 - 7x \quad (5)`$
|
|
|
|
Sub $`(5)`$ into $`(4)`$
|
|
|
|
$`x - 7(11-7x) = -27`$
|
|
|
|
$`x - 77+ 49x = 27`$
|
|
|
|
$`50x = 50`$
|
|
|
|
$`x = 1 \quad (6)`$
|
|
|
|
Sub $`(6)`$ into $`(5)`$
|
|
|
|
$`y = 11 - 7(1)`$
|
|
|
|
$`y = 4 \quad (7)`$
|
|
|
|
Sub $`(6), (7)`$ into $`(3)`$
|
|
|
|
$`(1+2)^2 + 4^2 = r^2`$
|
|
|
|
$`r^2 = 16 + 9`$
|
|
|
|
$`r^2 = 25`$
|
|
|
|
$`\therefore (x-1)^2 + (y-4)^2 = 25`$ is the equation of the circle.
|
|
|
|
|
|
|
|
|
|
|