1
0
mirror of https://gitlab.com/magicalsoup/Highschool.git synced 2025-01-23 16:11:46 -05:00
highschool/Grade 10/Math/MPM2DZ/Trig Quiz 1.md
2019-11-13 20:21:50 +00:00

2.6 KiB

Question 1

\(`\because \angle B^\prime = \angle B \quad (\text{Corresonding Line theorem})`\)

\(`\because \angle C^\prime = \angle C \quad (\text{Corresponding Line theorem})`\)

\(`\therefore \triangle AB^\prime C^\prime \sim \triangle ABC \quad (\text{ AA } \sim) `\)

\(`\therefore \dfrac{AB^\prime}{B^\prime C^\prime} = \dfrac{AB}{BC} `\)

\(`\therefore \dfrac{30}{14} = \dfrac{30+x}{22}`\)

\(`14(30+x) = 22(30) `\)

\(`x = \dfrac{22(30)}{14} - 30 `\)

\(`x = 17.1428571 \approx 17.14 `\)

\(`\dfrac{AC^\prime}{B^\prime C^\prime} = \dfrac{AC}{BC} `\)

\(`\dfrac{y}{14} = \dfrac{y+15}{22} `\)

\(`22y = 14y + 14(15) `\)

\(`8y = 14(15) `\)

\(`y = 26.25`\)

Question 2

\(`h = b \sin A`\)

\(`h = 11.3 \sin 32`\)

\(`h = 5.99`\)

\(`\because h \le 6.8 \le 11.3`\)

\(`\therefore 2 \triangle 's \text{ exist}`\)

\(`\text{ Lets call point } T \text{ is the height that is perpendicular on side } AB \text{ and connects to point } C. \text { and } B^\prime \text{ be the other possible point of } B.`\)

\(`\text{ Case } 1:`\)
\(`\angle CB^\prime T = \sin^{-1} \Bigl(\dfrac{5.99}{6.8} \Bigr)`\)
\(`\angle CB^\prime T = 61.75^o`\)
\(`\angle AB^\prime C = 180 - 61.75 = 118.25^o (\text{ Complentary Angle Theorem})`\)
\(`\angle ACB^\prime = 180 - 118.25 - 32 = 29.75^o (\text{ASTT})`\)
\(`\dfrac{AB}{\sin \angle ACB^\prime} = \dfrac{CB^\prime}{\sin A}`\)
\(`\dfrac{AB}{\sin29.75} = \dfrac{6.8}{\sin 32}`\)
\(`AB = \dfrac{\sin 29.75 \times 6.8}{\sin32}`\)
\(`AB = 6.37`\)

\(`\text{ Case } 2: `\)

\(`\angle ABC = 61.75`\)

\(`\angle ACB = 180 - 32 - 61.75 = 86.25^o (\text{ ASTT})`\)

\(`\dfrac{AB}{\sin C} = \dfrac{CB}{\sin A}`\)

\(`\dfrac{AB}{\sin 86.25} = \dfrac{6.8}{\sin 32}`\)

\(`AB = \dfrac{\sin 86.25 \times 6.8}{\sin 32}`\)

\(`AB = 12.8`\)

Question 3

\(`\text{let the square be } ABCD \text{ and the inner triangle } AEF `\)

\(`\sin (\beta) = \dfrac{EF}{AE} = \dfrac{EF}{1} = EF`\)

\(`\sin (\alpha) \sin(\beta) = \dfrac{EF}{AE} \times \dfrac{EC}{EF} = \dfrac{EC}{AE} = \dfrac{EC}{1} = EC`\)

\(`\cos(\alpha) \sin(\beta) = \dfrac{CF}{EF} \times \dfrac{EF}{AE} = \dfrac{CF}{AE} = \dfrac{CF}{1} = CF`\)

\(`\text{Draw a parallel line to } CD \text{ that connects point } E \text{ to } AD. \sin(\alpha + \beta) = \dfrac{CD}{AE} = \dfrac{CD}{1} = CD`\)

\(`\cos(\alpha) \cos(\beta) = \dfrac{AD}{AF} \times \dfrac{AF}{AE} = \dfrac{AD}{1} = AD`\)

\(`\sin(\alpha) \cos(\beta) = \dfrac{FD}{AF} \times \dfrac{AF}{AE} = \dfrac{FD}{1} = FD`\)

\(`\cos(\beta) = \dfrac{AF}{AE} = \dfrac{AF}{1} = AF`\)

\(`\text{Draw a parallel line to } CD \text{ that connects point } E \text{ to } AD. \cos(\alpha + \beta) = \dfrac{BE}{AE} = \dfrac{BE}{1} = BE`\)