forked from eggy/eifueo
math: add basic trig identities
This commit is contained in:
parent
b70eaa6dd4
commit
142c840767
@ -2,6 +2,36 @@
|
||||
|
||||
The course code for this page is **MHF4U7**.
|
||||
|
||||
## 3 - Geometry and trigonometry
|
||||
|
||||
To find the result of a primary trig ratio, the related acute angle (RAA) should first be found before referring to the CAST rule to determine quadrants before identifying all correct answers in the domain.
|
||||
|
||||
### Circles
|
||||
|
||||
The equation below is true for every point on a circle with radius $r$.
|
||||
$$x^2+y^2=r^2$$
|
||||
|
||||
The area of a **sector** requires knowledge of the radius and angle in **radians** that the sector encompasses.
|
||||
$$A=\frac{r^2\theta}{2}$$
|
||||
<img src="/resources/images/sector.png" width=500>(Source: Kognity)</img>
|
||||
|
||||
### Trigonometric identities
|
||||
|
||||
The **Pythagorean identity** relates the radius of a circle to its x and y components.
|
||||
$$\sin^2\theta+\cos^2\theta=\tan^2\theta$$
|
||||
|
||||
The **quotient identity** relates the side lengths of a right-angled triangle.
|
||||
$$\tan\theta=\frac{\sin\theta}{\cos\theta}$$
|
||||
|
||||
The **double angle identities** can be used to convert one trig ratio to another.
|
||||
$$
|
||||
\sin 2\theta = 2\sin\theta\cos\theta \\
|
||||
\cos 2\theta = 2\cos^2\theta-1 \\
|
||||
\cos 2\theta = \cos^2\theta-\sin^2\theta \\
|
||||
\cos 2\theta = 1-2\sin^2\theta \\
|
||||
\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}
|
||||
$$
|
||||
|
||||
## 4 - Statistics and probability
|
||||
|
||||
!!! note "Definition"
|
||||
|
Loading…
Reference in New Issue
Block a user