forked from eggy/eifueo
ece108: add injective/surjective
This commit is contained in:
parent
d5ce9d9dd0
commit
2dec44284b
@ -516,3 +516,31 @@ $$\text{preimage}(f)=\{x\in X|\exists y\in B,y=f(x)\}$$
|
|||||||
The **image** is the subset of the codomain that is mapped by a specific subset $A$ of the domain.
|
The **image** is the subset of the codomain that is mapped by a specific subset $A$ of the domain.
|
||||||
|
|
||||||
$$\text{image}(f)=\{f(x)|\exists x\in A\}$$
|
$$\text{image}(f)=\{f(x)|\exists x\in A\}$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
For the function $f: \mathbb R^+_0\to \mathbb R$ defined by $x\longmapsto x^2$:
|
||||||
|
|
||||||
|
- the domain is $\mathbb R^+_0$
|
||||||
|
- the codomain is $\mathbb R$
|
||||||
|
- the range is $\mathbb R^+_0$
|
||||||
|
- the preimage for $\{1\}$ is $\{1,-1\}$
|
||||||
|
- the image for $0$ is $\{0\}$
|
||||||
|
|
||||||
|
Two functions $f=g$ are equal if and only if:
|
||||||
|
|
||||||
|
- their domains are equal
|
||||||
|
- their codomains are equal
|
||||||
|
- $f(x)=g(x)$ for all $x\in \text{dom}(f)$
|
||||||
|
|
||||||
|
### Function types
|
||||||
|
|
||||||
|
An **injective function**, **injection**, or **one-to-one function** is a function that maps only one $y$-value to each $x$.
|
||||||
|
|
||||||
|
$$\forall x_1,x_2\in\text{dom}(f), \text{ if } f(x_1)=f(x_2),x_1=x_2$$
|
||||||
|
|
||||||
|
A **surjective function**, **surjection**, or **onto** is a function that has its codomain equal to its range.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\forall y\in\text{cod}(f),\exists x\in\text{dom}(f), f(x)=y \\
|
||||||
|
\text{rang}(f)=\text{cod}(f)
|
||||||
|
$$
|
||||||
|
Loading…
Reference in New Issue
Block a user