forked from eggy/eifueo
ece140: add steady state analysis
This commit is contained in:
parent
27ca9fa5a4
commit
3674ecb909
@ -297,3 +297,160 @@ $$i=\frac 1 L\int^t_{t_0}v(t)dt + i(t_0)$$
|
|||||||
Much like capacitors, inductors have energy now based on current.
|
Much like capacitors, inductors have energy now based on current.
|
||||||
|
|
||||||
$$U=\frac 1 2 Li^2$$
|
$$U=\frac 1 2 Li^2$$
|
||||||
|
|
||||||
|
## First-order circuits
|
||||||
|
|
||||||
|
!!! definition
|
||||||
|
- An **RC** circuit contains a resistor and a capacitor.
|
||||||
|
- An **RL** circuit contains a resistor and an inductor.
|
||||||
|
- **First-order circuits** contain derivatives.
|
||||||
|
- A **source-free circuit** assumes that energy already exists in the capacitor/inductor and no external energy enters the system.
|
||||||
|
- The **circuit response** is the behaviour of the circuit after excitation.
|
||||||
|
- The **natural response** is the behaviour of the circuit without external excitation.
|
||||||
|
|
||||||
|
The **time constant** $\tau$ is the time requirement for the circuit to decay to $\frac 1 e$ of its initial value. For RC circuits:
|
||||||
|
|
||||||
|
$$\tau=RC$$
|
||||||
|
|
||||||
|
$$v(t)=v_0e^{-t/\tau}$$
|
||||||
|
|
||||||
|
RL circuits have very similar formulae:
|
||||||
|
|
||||||
|
$$\tau=\frac L R$$
|
||||||
|
|
||||||
|
$$i(t)=i_0e^{-t/\tau}$$
|
||||||
|
|
||||||
|
### Singularity functions
|
||||||
|
|
||||||
|
The **unit step function** is a stair that is undefined at zero.
|
||||||
|
|
||||||
|
$$
|
||||||
|
u(t)=\begin{cases}
|
||||||
|
0 & \text{if }t<0 \\
|
||||||
|
1 & \text{if }t>0
|
||||||
|
$$
|
||||||
|
|
||||||
|
The **unit impulse/delta function** is the derivative of the unit step function.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\delta(t)=\frac{d}{dt}u(t)=\begin{cases}
|
||||||
|
0 & \text{if }t<0 \\
|
||||||
|
\text{undefined} & \text{if }t=0 \\
|
||||||
|
0 & \text{if }t>0
|
||||||
|
$$
|
||||||
|
|
||||||
|
The sudden spike at $t=0$ means that $\int^{0+}_{0-}\delta(t)dt=1$.
|
||||||
|
|
||||||
|
This function is related to signal strength. For the function $a\delta(t+y)$, changing $y$ shifts the phase while shifting $a$ shifts amplitude.
|
||||||
|
|
||||||
|
To obtain $f(t)$ at the impulse:
|
||||||
|
|
||||||
|
$$\int^b_a\delta(t-t_0)dt=f(t_0$$
|
||||||
|
|
||||||
|
|
||||||
|
The **unit ramp function** is the integral of the unit step function.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
r(t)&=\int^1_{-\infty}u(\lambda)d\lambda=tu(t) \\
|
||||||
|
&=\begin{cases}
|
||||||
|
0 & \text{if }t\leq 0 \\
|
||||||
|
t & \text{if }t\geq 0
|
||||||
|
\end{cases}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
## Circuit responses
|
||||||
|
|
||||||
|
The total response to a circuit $V$ can be expressed as various combinations of:
|
||||||
|
|
||||||
|
- the natural response, $v_n=v_0e^{-t/\tau}$
|
||||||
|
- the forced response (induced) $v_f=v_s(1-e^{-t\tau})$
|
||||||
|
- the temporary response, $(v_0-v_s)e^{-1/t}$
|
||||||
|
- the permanent/steady-state response, $v_s$
|
||||||
|
|
||||||
|
$$
|
||||||
|
v(t)=\begin{cases}
|
||||||
|
v_0 & \text{if }t<0 \\
|
||||||
|
v_s+(v_0-v_s)e^{-t/\tau} &\text{if }t>0
|
||||||
|
\end{cases}
|
||||||
|
$$
|
||||||
|
|
||||||
|
In general, for current and voltage ($x$), where $x_\infty$ is the final value and $x_0$ is the initial value:
|
||||||
|
|
||||||
|
$$\boxed{x(t)=x(\infty)+[x(0)-x(\infty)]^{-t/\tau}}$$
|
||||||
|
|
||||||
|
A delayed response by $t_0$ shifts $t$ to $t-t_0$ and $x(0)$ to $x(t_0)$.
|
||||||
|
|
||||||
|
## Alternating current
|
||||||
|
|
||||||
|
Where $V_m$ is the amplitude of the voltage and $\omega$ is its angular frequency:
|
||||||
|
|
||||||
|
$$v(t)=V_m\sin(\omega t)$$
|
||||||
|
|
||||||
|
For a sinusoid's period $T$, a circuit is period if and only if, for all $n\in\mathbb Z$:
|
||||||
|
|
||||||
|
$$v(t)=v(t+nT)$$
|
||||||
|
|
||||||
|
### Phasors
|
||||||
|
|
||||||
|
The **phasor** is the complex number vector version of the sinusoid in the time domain.
|
||||||
|
|
||||||
|
$$v(t)=\text{Re}(\bold Ve^{j\omega t})$$
|
||||||
|
|
||||||
|
Please see [MATH 115: Linear Algebra#Geometry](/1a/math115/#geometry) for more information.
|
||||||
|
|
||||||
|
$$\bold V=V_m^{j\phi}$$
|
||||||
|
|
||||||
|
To transform time domains to frequency domains:
|
||||||
|
|
||||||
|
| Sinusoidal | Phasor |
|
||||||
|
| --- | --- |
|
||||||
|
| $V_m\cos(\omega t+\phi)$ | $V_m\angle\phi$ |
|
||||||
|
| $V_m\sin(\omega t+\phi)$ | $V_m\angle\phi-90^\circ$ |
|
||||||
|
|
||||||
|
The **derivative** of a phasor is itself multiplied by $j\omega$.
|
||||||
|
|
||||||
|
$$\frac{d}{dt}\bold V=j\omega\bold V$$
|
||||||
|
|
||||||
|
Adding sinusoids of the **same frequency** ($\omega$) is equivalent to adding their phasors.
|
||||||
|
|
||||||
|
If $\bold V$ and $\bold I$ are phasors:
|
||||||
|
|
||||||
|
- Inductors: $\bold V=j\omega L\bold I$ ($\bold I$ lags $\bold V$ by 90°)
|
||||||
|
- Capacitors: $\bold V=\frac{I}{j\omega C}$ ($\bold V$ lags $\bold I$ by 90°)
|
||||||
|
|
||||||
|
The **scalar** quantity of **impedance** represents the opposition to electron flow, measured in ohms.
|
||||||
|
|
||||||
|
$$Z=\frac{1}{j\omega C}=j\omega L$$
|
||||||
|
|
||||||
|
It is effectively generalised resistance. Where $X$ is a positive value representing **reactance** such that $+jX$ implies inductance while $-jX$ implies capacitance:
|
||||||
|
|
||||||
|
$$Z=\frac{\bold V}{\bold I}=R\pm jX$$
|
||||||
|
|
||||||
|
**Admittance** is the inverse of impedance with units Siemens/mhos with factors **conductance** and **susceptance**:
|
||||||
|
|
||||||
|
$$Y=G+jB$$
|
||||||
|
|
||||||
|
Arranging equations yields
|
||||||
|
|
||||||
|
$$
|
||||||
|
G=\frac{R}{R^2+X^2} \\
|
||||||
|
B=-\frac{X}{R^2+X^2}
|
||||||
|
$$
|
||||||
|
|
||||||
|
### Steady state analysis
|
||||||
|
|
||||||
|
**Kirchoff's laws** only hold for phasor forms.
|
||||||
|
|
||||||
|
1. Convert to phasor forms
|
||||||
|
2. Solve phasor forms
|
||||||
|
3. Convert back to time domain
|
||||||
|
|
||||||
|
Superposition must be summed at the end only, although individual components can first be solved.
|
||||||
|
|
||||||
|
1. Convert to phasor forms
|
||||||
|
2. Solve each individual current/voltage that make KCL/KVL
|
||||||
|
3. Convert to time domain
|
||||||
|
4. Apply KCL/KVL
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user