ece205: orthogonality and fourier

This commit is contained in:
eggy 2023-11-07 14:55:44 -05:00
parent ca29913314
commit bb8f159c35

View File

@ -245,6 +245,37 @@ If functions $f$ and $g$ have a period $T$, then both $af+bg$ and $fg$ also must
- odd × odd = even - odd × odd = even
- even × odd = odd - even × odd = odd
## Orthogonality
$$\int^L_{-L}\cos(\frac{m\pi x}{L})\sin(\frac{n\pi x}{L})dx=0$$
$$
\int^L_{-L}\cos(\frac{m\pi x}{L})(\frac{n\pi x}{L})dx=\begin{cases}
2L & \text{if }m=n=0 \\
L & \text{if }m=n\neq 0 \\
0 & \text{if }m\neq n
\end{cases}
$$
$$
\int^L_{-L}\sin(\frac{m\pi x}{L}\sin(\frac{n\pi x}{L})dx=\begin{cases}
L & \text{if }m=n \\
0 & \text{if }m\neq n
\end{cases}
$$
Functions are **orthogonal** on an interval when the integral of their product is zero, and a set of functions is **mutually orthogonal** if all functions in the set are orthogonal to each other.
If a Fourier series converges to $f(x)$:
$$f(x)=\frac{a_0}{2} + \sum^\infty_{n=1}\left(a_n\cos(\frac{n\pi x}{L})+b_n\sin(\frac{n\pi x}{L})\right)$$
The **Euler-Fourier** formulae must apply:
$$
\boxed{a_n=\frac 1 L\int^L_{-L}f(x)\cos(\frac{n\pi x}{L})dx} \\
\\
\boxed{b_n=\frac 1 L\int^L_{-L}f(x)\sin(\frac{n\pi x}{L})dx}
$$
## Resources ## Resources