forked from eggy/eifueo
math: all the derivatives
This commit is contained in:
parent
a5583d5f32
commit
d8ad88103e
@ -2,6 +2,27 @@
|
||||
|
||||
The course code for this page is **MHF4U7**.
|
||||
|
||||
## Basic math — move later
|
||||
|
||||
### Logarithm rules
|
||||
|
||||
The logarithm of a product can be rewritten as the sum of two logarithms.
|
||||
$$\log_c(ab)=\log_c(a)+\log_c(b)$$
|
||||
|
||||
The logarithm of a quotient can be rewritten as the difference of two logarithms.
|
||||
$$\log_c\biggr(\frac{a}{b}\biggr)=\log_c(a)-\log_c(b)$$
|
||||
|
||||
The exponentials of a logarithm can be brought down to be coefficients.
|
||||
$$\log_c(a^n)=n\log_c(a)$$
|
||||
|
||||
Some simple values can be easily found.
|
||||
|
||||
$$
|
||||
a^{\log_a(x)}=x \\
|
||||
\log_a(a)=1 \\
|
||||
\log_a(1)=0
|
||||
$$
|
||||
|
||||
## 3 - Geometry and trigonometry
|
||||
|
||||
To find the result of a primary trig ratio, the related acute angle (RAA) should first be found before referring to the CAST rule to determine quadrants before identifying all correct answers in the domain.
|
||||
@ -32,6 +53,13 @@ $$
|
||||
\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}
|
||||
$$
|
||||
|
||||
### Euler's number
|
||||
|
||||
Euler's number $e$ is a constant irrational number represented as a special limit in calculus.
|
||||
$$e=\lim_{x\to ∞}\biggr(1+\frac{1}{x}\biggr)^x$$
|
||||
|
||||
The inverse of $e^x$ is $\log_e(x)$, which is known as the **natural logarithm** and can be rewritten as $\ln(x)$ ("lawn x").
|
||||
|
||||
## 4 - Statistics and probability
|
||||
|
||||
!!! note "Definition"
|
||||
@ -552,6 +580,31 @@ The **chain rule** applies to trigonometric functions and will be applied recurs
|
||||
|
||||
Trigonometric identities are not polynomial so values on an interval need to be determined by substituting values between vertical asymptotes and critical points.
|
||||
|
||||
### Extended derivative rules
|
||||
|
||||
For an **exponential function** where $f(x)=b^x,b≠0$ or $f(x)=b^{g(x)}$, respectively:
|
||||
|
||||
$$
|
||||
f´(x)=b^x\cdot\ln(b) \\
|
||||
f´(g(x))=b^{g(x)}\cdot\ln(b)\cdot g´(x)
|
||||
$$
|
||||
|
||||
For a **logarithmic function** where $f(x)=\log_b(x)$ or $f(x)=\log_b(g(x))$, respectively:
|
||||
|
||||
$$
|
||||
f´(x)=\frac{1}{\ln(b)\cdot x} \\
|
||||
f´(x)=\frac{g´(x)}{\ln(b)\cdot g(x)}
|
||||
$$
|
||||
|
||||
From the above base derivatives the derivatives for functions involving $e$ and the **natural logarithm** can be found:
|
||||
|
||||
$$
|
||||
\frac{d}{dx}e^x=e^x \\
|
||||
\frac{d}{dx}e^{g(x)}=e^{g(x)}\cdot g´(x) \\
|
||||
\frac{d}{dx}\ln(x)=\frac{1}{x} \\
|
||||
\frac{d}{dx}\ln(g(x))=\frac{g´(x)}{g(x)}
|
||||
$$
|
||||
|
||||
### Higher order derivatives
|
||||
|
||||
The **second derivative** of $f(x)$ is the derivative of the first derivative of $f(x)$, that is, $f´´(x)$.
|
||||
|
Loading…
Reference in New Issue
Block a user