forked from eggy/eifueo
ece205: add complex fouriers
This commit is contained in:
parent
6466c633c0
commit
e0dcf5a960
@ -453,6 +453,42 @@ Then, for any $x\in[-L,L]$:
|
||||
|
||||
$$\int^x_{-L}f(t)dt=\int^x_{-L}\frac{a_0}{2}dt+\sum^\infty_{n=1}\int^x_{-L}(a_n\cos(\frac{n\pi t}{L})+b_n\sin(\frac{n\pi t}{L}))dt$$
|
||||
|
||||
### Complex Fourier series
|
||||
|
||||
By employing Euler's theorem, sine and cosine can be transformed into exponential forms.
|
||||
|
||||
$$
|
||||
\cos(\frac{n\pi x}{L})=\frac{e^{i\frac{n\pi x}{L}} + e^{-i\frac{n\pi x}{L}}}{2} \\
|
||||
\sin(\frac{n\pi x}{L})=\frac{-ie^{i\frac{n\pi x}{L}} + ie^{-i\frac{n\pi x}{L}}}{2}
|
||||
$$
|
||||
|
||||
Thus the **complex Fourier series** is given by:
|
||||
|
||||
$$
|
||||
f(x)=\sum^\infty_{n=-\infty}c_ne^{i\frac{n\pi x}{L}} \\
|
||||
c_n=\frac{1}{2L}\int^L_{-L}f(x)e^{-i\frac{n\pi x}{L}}dx = \frac 1 2(a_n-ib_n)
|
||||
$$
|
||||
|
||||
To convert it to a real Fouier series:
|
||||
|
||||
- $a_0=2c_0$
|
||||
- $a_n=c_n+\overline{c_n}$
|
||||
- $b_n=i(c_n-\overline{c_n})$
|
||||
|
||||
!!! example
|
||||
The complex Fourier series for the sawtooth wave function: $f(x)=x,-1<x<1,f(x+2)=f(x)$. Thus we have a period of 2 and $L=1$.
|
||||
|
||||
\begin{align*}
|
||||
c_0&=\frac 1 2\int^1_{-1}\underbrace{xe^{0}}_\text{odd}dx \\
|
||||
&=0 \\
|
||||
\\
|
||||
c_n&=\frac 1 2\int^1_{-1}xe^{-in\pi x}dx \\
|
||||
\tag{IBP}&=\frac 1 2\left[\frac{xe^{-in\pi x}}{-in\pi}-\int\frac{1}{-in\pi}e^{-in\pi x}dx\right]^1_{-1} \\
|
||||
&=\frac 1 2\left[\frac{xe^{-n\pi x}}{-in\pi}+\frac{1}{n^2\pi^2}e^{-in\pi x}\right]^1_{-1} \\
|
||||
&=\frac{(-1)^ni}{n\pi} \\
|
||||
\\
|
||||
\therefore f(x)&=\sum^\infty_{\substack{n=-\infty \\ n\neq0}}\frac{(-1)^ni}{n\pi}e^{in\pi x}
|
||||
\end{align*}
|
||||
|
||||
## Resources
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user