forked from eggy/eifueo
203 lines
6.1 KiB
Markdown
203 lines
6.1 KiB
Markdown
# MATH 117: Calculus 1
|
||
|
||
## Functions
|
||
|
||
A **function** is a rule where each input has exactly one output, which can be determined by the **vertical line test**.
|
||
|
||
!!! definition
|
||
- The **domain** is the set of allowable independent values.
|
||
- The **range** is the set of allowable dependent values.
|
||
|
||
Functions can be **composed** to apply the result of one function to another.
|
||
$$
|
||
(f\circ g)(x) = f(g(x))
|
||
$$
|
||
|
||
!!! warning
|
||
Composition is not commutative: $f\circ g \neq g\circ f$.
|
||
|
||
## Inverse functions
|
||
|
||
The inverse of a function swaps the domain and range of the original function: $f^{-1}(x)$ is the inverse of $f(x)$.. It can be determined by solving for the other variable:
|
||
$$
|
||
\begin{align*}
|
||
y&=mx+b \\
|
||
y-b&=mx \\
|
||
x&=\frac{y-b}{m}
|
||
\end{align*}
|
||
$$
|
||
|
||
Because the domain and range are simply swapped, the inverse function is just the original function reflected across the line $y=x$.
|
||
|
||
<img src="https://upload.wikimedia.org/wikipedia/commons/1/11/Inverse_Function_Graph.png" width=300>(Source: Wikimedia Commons, public domain)</img>
|
||
|
||
If the inverse of a function is applied to the original function, the original value is returned.
|
||
$$f^{-1}(f(x)) = x$$
|
||
|
||
A function is **invertible** only if it is "**one-to-one**": each output must have exactly one input. This can be tested via a horizontal line test of the original function.
|
||
|
||
If a function is not invertible, restricting the domain may allow a **partial inverse** to be defined.
|
||
|
||
!!! example
|
||
<img src="https://upload.wikimedia.org/wikipedia/commons/7/70/Inverse_square_graph.svg">(Source: Wikimedia Commons, public domain)</img>
|
||
By restricting the domain to $[0,\inf]$, the **multivalued inverse function** $y=\pm\sqrt{x}$ is reduced to just the partial inverse $y=\sqrt{x}$.
|
||
|
||
## Symmetry
|
||
78u7u887878
|
||
An **even function** satisfies the property that $f(x)=f(-x)$, indicating that it is unchanged by a reflection across the y-axis.
|
||
|
||
An **odd function** satisfies the property that $-f(x)=f(-x)$, indicating that it is unchanged by a 180° rotation about the origin.
|
||
|
||
The following properties are always true for even and odd functions:
|
||
|
||
- even × even = even
|
||
- odd × odd = even
|
||
- even × odd = odd
|
||
|
||
Functions that are symmetric (that is, both $f(x)$ and $f(-x)$ exist) can be split into an even and odd component. Where $g(x)$ is the even component and $h(x)$ is the odd component:
|
||
$$
|
||
\begin{align*}
|
||
f(x) &= g(x) + h(x) \\
|
||
g(x) &= \frac{1}{2}(f(x) + f(-x)) \\
|
||
h(x) &= \frac{1}{2}(f(x) - f(-x))
|
||
\end{align*}
|
||
$$
|
||
|
||
!!! note
|
||
The hyperbolic sine and cosine are the even and odd components of $f(x)=e^x$.
|
||
$$
|
||
\cosh x = \frac{1}{2}(e^x + e^{-x}) \\
|
||
\sinh x = \frac{1}{2}(e^x - e^{-x})
|
||
$$
|
||
|
||
## Piecewise functions
|
||
|
||
A piecewise function is one that changes formulae at certain intervals. To solve piecewise functions, each of one's intervals should be considered.
|
||
|
||
### Absolute value function
|
||
|
||
$$
|
||
\begin{align*}
|
||
|x| = \begin{cases}
|
||
x &\text{ if } x\geq 0 \\
|
||
-x &\text{ if } x < 0
|
||
\end{cases}
|
||
\end{align*}
|
||
$$
|
||
|
||
### Signum function
|
||
|
||
The signum function returns the sign of its argument.
|
||
|
||
$$
|
||
\begin{align*}
|
||
\text{sgn}(x)=\begin{cases}
|
||
-1 &\text{ if } x < 0 \\
|
||
0 &\text{ if } x = 0 \\
|
||
1 &\text{ if } x > 0
|
||
\end{cases}
|
||
\end{align*}
|
||
$$
|
||
|
||
### Ramp function
|
||
|
||
The ramp function makes a ramp through the origin that suddenly flatlines at 0. Where $c$ is a constant:
|
||
|
||
$$
|
||
\begin{align*}
|
||
r(t)=\begin{cases}
|
||
0 &\text{ if } x \leq 0 \\
|
||
ct &\text{ if } x > 0
|
||
\end{cases}
|
||
\end{align*}
|
||
$$
|
||
|
||
<img src="https://upload.wikimedia.org/wikipedia/commons/c/c9/Ramp_function.svg" width=700>(Source: Wikimedia Commons, public domain)</img>
|
||
|
||
### Floor and ceiling functions
|
||
|
||
The floor function rounds down.
|
||
$$\lfloor x\rfloor$$
|
||
|
||
The ceiling function rounds up.
|
||
$$\lceil x \rceil$$
|
||
|
||
### Fractional part function
|
||
|
||
In a nutshell, the fractional part function:
|
||
|
||
- returns the part **after the decimal point** if the number is positive
|
||
- returns 1 - **the part after the decimal point** if the number is negative
|
||
|
||
$$\text{FRACPT}(x) = x-\lfloor x\rfloor$$
|
||
|
||
Because this function is periodic, it can be used to limit angles to the $[0, 2\pi)$ range with:
|
||
$$f(\theta) = 2\pi\cdot\text{FRACPT}\biggr(\frac{\theta}{2\pi}\biggr)$$
|
||
|
||
### Heaviside function
|
||
|
||
The Heaviside function effectively returns a boolean whether the number is greater than 0.
|
||
$$
|
||
\begin{align*}
|
||
H(x) = \begin{cases}
|
||
0 &\text{ if } t < 0 \\
|
||
1 &\text{ if } t \geq 0
|
||
\end{cases}
|
||
\end{align*}
|
||
$$
|
||
|
||
This can be used to construct other piecewise functions by enabling them with $H(x-a)$ as a factor, where $a$ is the interval.
|
||
|
||
In a nutshell:
|
||
|
||
- $1-H(t-a)$ lets you "turn a function off" at at $t=a$
|
||
- $H(t-a)$ lets you "turn a function on at $t=a$
|
||
- $H(t-a) - H(t-b)$ leaves a function on in the interval $(a, b)$
|
||
|
||
!!! example
|
||
TODO: example for converting piecewise to heaviside via collecting heavisides
|
||
|
||
and vice versa
|
||
|
||
## Periodicity
|
||
|
||
The function $f(t)$ is periodic only if there is a repeating pattern, i.e. such that for every $x$, there is an $f(x) = f(x + nT)$, where $T$ is the period and $n$ is any integer.
|
||
|
||
### Circular motion
|
||
|
||
Please see [SL Physics 1#6.1 - Circular motion](/g11/sph3u7/#61-circular-motion) and its subcategory "Angular thingies" for more information.
|
||
|
||
## Partial function decomposition (PFD)
|
||
|
||
In order to PFD:
|
||
|
||
1. Factor the denominator into irreducibly quadratic or linear terms.
|
||
2. For each factor, create a term. Where capital letters below are constants:
|
||
- A linear factor $Bx+C$ has a term $\frac{A}{Bx+C}$.
|
||
- A quadratic factor $Dx^2+Ex+G$ has a term $\frac{H}{Dx^2+Ex+G}$.
|
||
3. Set the two equal to each other such that the denominators can be factored out.
|
||
4. Create systems of equations to solve for each constant.
|
||
|
||
!!! example
|
||
To decompose $\frac{x}{(x+1)(x^2+x+1)}$:
|
||
$$
|
||
\begin{align*}
|
||
\frac{x}{(x+1)(x^2+x+1)} &= \frac{A}{x+1} + \frac{Bx+C}{x^2+x+1} \\
|
||
&= \frac{A(x^2+x+1) + (Bx+C)(x+1)}{(x+1)(x^2+x+1)} \\
|
||
x &= A(x^2+x+1) + (Bx+C)(x+1) \\
|
||
0x^2 + x + 0 &= (Ax^2 + Bx^2) + (Ax + Bx + Cx) + (A + C) \\
|
||
\\
|
||
&\begin{cases}
|
||
0 = A + B \\
|
||
1 = A + B + C \\
|
||
0 = A + C
|
||
\end{cases}
|
||
\\
|
||
A &= -1 \\
|
||
B &= 1 \\
|
||
C &= 1 \\
|
||
\\
|
||
∴ \frac{x}{(x+1)(x^2+x+1)} &= -\frac{1}{x+1} + \frac{x + 1}{x^2 + x + 1}
|
||
\end{align*}
|
||
$$
|