forked from eggy/eifueo
43 lines
1.2 KiB
Markdown
43 lines
1.2 KiB
Markdown
# ECE 106: Electricity and Magnetism
|
|
|
|
## MATH 117 review
|
|
|
|
!!! definition
|
|
A definite integral is composed of:
|
|
|
|
- the **upper limit**, $b$,
|
|
- the **lower limit**, $a$,
|
|
- the **integrand**, $f(x)$, and
|
|
- the **differential element**, $dx$.
|
|
|
|
$$\int^b_a f(x)\ dx$$
|
|
|
|
The original function **cannot be recovered** from the result of a definite integral unless it is known that $f(x)$ is a constant.
|
|
|
|
## N-dimensional integrals
|
|
|
|
Much like how $dx$ represents an infinitely small line, $dx\cdot dy$ represents an infinitely small rectangle. This means that the surface area of an object can be expressed as:
|
|
|
|
$$dS=dx\cdot dy$$
|
|
|
|
Therefore, the area of a function can be expressed as:
|
|
|
|
$$S=\int^x_0\int^y_0 dy\ dx$$
|
|
|
|
where $y$ is usually equal to $f(x)$, changing on each iteration.
|
|
|
|
!!! example
|
|
The area of a circle can be expressed as $y=\pm\sqrt{r^2-x^2}$. This can be reduced to $y=2\sqrt{r^2-x^2}$ because of the symmetry of the equation.
|
|
|
|
$$
|
|
\begin{align*}
|
|
A&=\int^r_0\int^{\sqrt{r^2-x^2}}_0 dy\ dx \\
|
|
&=\int^r_0\sqrt{r^2-x^2}\ dx
|
|
\end{align*}
|
|
$$
|
|
|
|
!!! warning
|
|
Similar to parentheses, the correct integral squiggly must be paired with the correct differential element.
|
|
|
|
## Cartesian coordinates
|