eifueo/docs/2a/ece205.md
2023-11-07 14:55:44 -05:00

283 lines
9.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# ECE 205: Advanced Calculus 1
## Laplace transform
The Laplace transform is a wonderful operation to convert a function of $t$ into a function of $s$. Where $s$ is an unknown variable independent of $t$:
$$
\mathcal L\{f(t)\}=F(s)=\int^\infty_0e^{-st}f(t)dt, s > 0
$$
??? example
To solve for $\mathcal L\{\sin(at)\}$:
\begin{align*}
\mathcal L\{f(t)\}&=\int^\infty_0e^{-st}\sin(at)dt \\
\\
\text{IBP: let $u=\sin(at)$, $dv=e^{-st}dt$:} \\
&=\lim_{B\to\infty} \underbrace{\biggr[
\cancel{-\frac 1 se^{-st}\sin(at)}}_\text{0 when $s=0$ or $s=\infty$}+\frac a s\int e^{-st}\cos(at)dt
\biggr]^B_0 \\
&=\frac a s\lim_{B\to\infty}\left[\int e^{-st}\cos(at)dt \right]^B_0 \\
\text{IBP: let $u=\cos(at)$, $dv=e^{-st}dt$:} \\
&=\frac a s \lim_{B\to\infty}\left[
-\frac 1 s e^{-st}\cos(at)-\frac a s\underbrace{\int e^{-st}\sin(at)dt}_{\mathcal L\{\sin(at)\}}
\right]^B_0 \\
&=\frac{a}{s^2}-\frac{a^2}{s^2}\mathcal L\{\sin(at)\} \\
\mathcal L\{\sin(at)\}\left(1+\frac{a^2}{s^2}\right)&=\frac{a}{s^2} \\
\mathcal L\{\sin(at)\}&=\frac{a}{a^2+s^2}, s > 0
\end{align*}
A **piecewise continuous** function on $[a,b]$ is continuous on $[a,b]$ except for a possible finite number of finite jump discontinuities.
- This means that any jump discontinuities must have a finite limit on both sides.
- A piecewise continuous function on $[0,\infty)$ must be piecewise continuous $\forall B>0, [0,B]$.
The **exponential order** of a function is $a$ if there exist constants $K, M$ such that:
$$|f(t)|\leq Ke^{at}\text{ when } t\geq M$$
!!! example
- $f(t)=7e^t\sin t$ has an exponential order of 1.
- $f(t)=e^{t^2}$ does not have an exponential order.
### Linearity
A **piecewise continuous** function $f$ on $[0,\infty)$ of an exponential order $a$ has a defined Laplace transform for $s>a$.
Laplace transforms are **linear**. If there exist LTs for $f_1, f_2$ for $s>a_1, a_2$, respectively, for $s=\text{max}(a_1, a_2)$:
$$\mathcal L\{c_1f_1 + c_2f_2\} = c_1\mathcal L\{f_1\} + c_2\mathcal L\{f_2\}$$
??? example
We find the Laplace transform for the following.
$$
f(t)=\begin{cases}
1 & 0\leq t < 1 \\
e^{-t} & t\geq 1
\end{cases}
$$
Clearly $f(t)$ is piecewise ocontinuous on $[0,\infty)$ and has an exponential order of -1 when $t\geq 1$ and 0 when $0\leq t<1$. Thus $\mathcal L\{f(t)\}$ is defined for $s>0$.
\begin{align*}
\mathcal L\{f(t)\}&=\int^1_0 e^{-st}dt + \int^\infty_1e^{-st}e^{-t}dt \\
\tag{$s\neq 0$}&=\left[-\frac 1 s e^{-st}\right]^1_0 + \int^\infty_1e^{t(-s-1)}dt \\
&=-\frac 1 se^{-s}+\frac 1 s + \lim_{B\to\infty}\left[ \frac{1}{-s-1}e^{t(-s-1)} \right]^B_1 \\
\tag{$s\neq 0,s>-1$}&=\frac{-e^{-s}+1}{s} -\frac{e^{-s-1}}{-s-1}
\end{align*}
We solve for the special case $s=0$:
\begin{align*}
\mathcal L\{f(t)\}&=\int^1_0 e^{0}dt + \int^\infty_1e^{-st}e^{-t}dt \\
&=1 -\frac{e^{-s-1}}{-s-1} \\
\end{align*}
$$
\mathcal L\{f(t)\}=
\begin{cases}
\frac{-e^{-s}+1}{s}-\frac{e^{-s-1}}{-s-1} & s\neq 0, s>-1 \\
1-\frac{e^{-s-1}}{-s-1} &s=0
\end{cases}
$$
If there exists a transform for $s>a$, the original function multiplied by $e^{-bt}$ exists for $s>a+b$.
$$\mathcal L\{f(t)\}=F(s), s>a\implies \mathcal L\{e^{-bt}f(t)\}=F(s),s>a+b$$
### Inverse transform
The inverse is found by manipulating the equation until you can look it up in the [Laplace Table](#resources).
The inverse transform is also **linear**.
### Inverse of rational polynomials
If the transformed function can be expressed as a partial fraction decomposition, it is often easier to use linearity to reference the table.
$$\mathcal L^{-1}\left\{\frac{P(s)}{Q(s)}\right\}$$
- $Q, P$ are polynomials
- $\text{deg}(P) > \text{deg}(Q)$
- $Q$ is factored
??? example
\begin{align*}
\mathcal L^{-1}\left\{\frac{s^2+9s+2}{(s-1)(s^2+2s-3)}\right\} &=\mathcal L^{-1}\left\{\frac{A}{s-1}+\frac{B}{s+3} + \frac{Cs+D}{(s-1)^2}\right\} \\
&\implies A=2,B=3,C=-1 \\
&=2\mathcal L^{-1}\left\{\frac{1}{s-1}\right\} + 3\mathcal L^{-1}\left\{\frac{1}{(s-1)^2}\right\}-\mathcal L^{-1}\left\{\frac{1}{s+3}\right\} \\
&=2e^t+3te^t-e^{-3t}
\end{align*}
### Inverse of differentiable equations
If a function $f$ is continuous on $[0,\infty)$ and its derivative $f'$ is piecewise continuous on $[0,\infty)$, for $s>a$:
$$
\mathcal L\{ f'\}=s\mathcal L\{f\}-f(0) \\
\mathcal L\{ f''\} = s^2\mathcal L\{f\}-s\cdot f(0)-f'(0)
$$
### Solving IVPs
Applying the Laplace transform to both sides of an IVP is valid to remove any traces of horrifying integration.
!!! example
\begin{align*}
y''-y'-2y=0, y(0)=1, y'(0)=0 \\
\mathcal L\{y''-y'-2y\}&=\mathcal L\{0\} \\
s^2\mathcal L\{y\}-s\cdot y(0)-y'(0) - s\mathcal L\{y\} +y(0) - 2\mathcal L\{y\}&=0 \\
\mathcal L\{y\}(s^2-s-2)-s+1&=0 \\
\mathcal L\{y\}&=\frac{s-1}{(s-2)(s+1)} \\
&= \\
\mathcal L^{-1}\{\mathcal L\{y\}\}&=\mathcal L^{-1}\left\{
\frac 1 3\cdot\frac{1}{s-2} + \frac 2 3\cdot\frac{1}{s+1}
\right\} \\
y&=\frac 1 3\mathcal L^{-1}\left\{\frac{1}{s-2}\right\} + \frac 2 3\mathcal L^{-1}\left\{\frac{1}{s+1}\right\} \\
\tag{from Laplace table}&=\frac 1 3 e^{2t} + \frac 2 3 e^{-t}
\end{align*}
### Heaviside / unit step
The Heaviside and unit step functions are identical:
$$
H(t-c)=u(t-c)=u_c(t)=\begin{cases}
0 & t < c \\
1 & t \geq c
\end{cases}
$$
Piecewise continuous functions can be manipulated into a single equation via the Heaviside function.
For a Heaviside transform $\mathcal L\{u_c(t)g(t)\}$, if $g$ is defined on $[0,\infty)$, $c\geq 0$, and $\mathcal L\{g(t+c)\}$ exists for some $s>s_0$:
$$
\mathcal L\{u_c(t)g(t)\}=e^{-sc}\mathcal L\{g(t+c)\},s>s_0
$$
Likewise, under the same conditions, shifting it twice restores it back to the original.
$$
\mathcal L\{u_c(t)f(t-c)\}=e^{-sc}\mathcal L\{f\}
$$
### Convolution
Convolution is a weird thingy that does weird things.
$$(f*g)(t)=\int^t_0f(\tau)g(t-\tau)d\tau$$
It is commutative ($f*g=g*f$) and is useful in transforms:
$$\mathcal L\{f*g\}=\mathcal L\{f\}\mathcal L\{g\}$$
!!! example
To solve $4y''+y=g(t),y(0)=3, y'(0)=-7$:
\begin{align*}
4\mathcal L\{y''\}+\mathcal L\{y\}&=\mathcal L\{g(t)\} \\
4(s^2\mathcal L\{y\}-s\cdot y(0) - y'(0))+\mathcal L\{y\} &=\mathcal L\{g(t)\} \\
\mathcal L\{y\}(4s^2+1)-12s+28&=\mathcal L\{g(t)\} \\
\mathcal L\{y\}&=\frac{\mathcal L\{g(t)\}}{4s^2+1} + \frac{12s}{4s^2+1} - \frac{28}{4s^2+1} \\
y&=\mathcal L^{-1}\left\{\frac{1}{4s^2+1}\mathcal L\{g(t)\}\right\} + \mathcal L^{-1}\left\{3\frac{s}{s^2+\frac 1 4}\right\}-\mathcal L^{-1}\left\{7\frac{1}{s^2+\frac 1 4}\right\} \\
&= \mathcal L^{-1}\left\{\frac 1 2\mathcal L\left\{\sin\left(\tfrac 1 2 t\right)\right\}\mathcal L\{g(t)\} \right\}+3\cos\left(\tfrac 1 2 t\right)-14\sin\left(\tfrac 1 2t\right) \\
&=\frac 1 2\left(\sin\left(\tfrac 1 2 t\right)*g(t)\right)+3\cos\left(\tfrac 1 2 t\right)-14\sin\left(\tfrac 1 2t\right) \\
&=\frac 1 2\int^t_0\sin(\tfrac 1 2\tau)g(t-\tau)d\tau + 3\cos(\tfrac 1 2 t)-14\sin(\tfrac 1 2 t)
\end{align*}
### Impulse
The **impulse for duration $\epsilon$** is defined by the **dirac delta function**:
$$
\delta_\epsilon(t)=\begin{cases}
\frac 1\epsilon & \text{if }0\leq t\leq\epsilon \\
0 & \text{else}
\end{cases}
$$
As $\epsilon\to 0, \delta_\epsilon(t)\to\infty$. Thus:
$$
\delta(t-a)=\begin{cases}
\infty & \text{if }t=a \\
0 & \text{else}
\end{cases} \\
\boxed{\int^\infty_0\delta(t-a)dt=1}
$$
If a function is continuous, multiplying it by the impulse function is equivalent to turning it on at that particular point. For $a\geq 0$:
$$\boxed{\int^\infty_0\delta(t-a)dt=g(a)}$$
Thus we also have:
$$\mathcal L\{\delta (t-a)\}=e^{-as}\implies\mathcal L^{-1}\{1\}=\delta(t)$$
## Heat flow
The temperature of a tube from $x=0$ to $x=L$ can be represented by the following DE:
$$\text{temp}=u(x,t)=\boxed{u_t=a^2u_{xx}},0<x<L,y>0$$
Two boundary conditions are requred to solve the problem for all $t>0$ — that at $t=0$ and at $x=0,x=L$.
- $u(x,0)=f(x),0\leq x\leq L$
- e.g., $u(0,t)=u(L,t)=0,t>0$
### Periodicity
The **period** of a function is an increment that always returns the same value: $f(x+T)=f(x)$, and its **fundamental period** of a function is the smallest possible period.
!!! example
The fundamental period of $\sin x$ is $2\pi$, but any $2\pi K,k\in\mathbb N$ is a period.
The fundamental periods of $\sin \omega x$ and $\cos\omega x$ are both $\frac{2\pi}{\omega}$.
If functions $f$ and $g$ have a period $T$, then both $af+bg$ and $fg$ also must have period $T$.
#### Manipulating polarity
- even: $\int^L_{-L}f(x)dx=2\int^L_0f(x)dx$
- odd: $\int^L_{-L}f(x)dx=0$
- even × even = even
- odd × odd = even
- even × odd = odd
## Orthogonality
$$\int^L_{-L}\cos(\frac{m\pi x}{L})\sin(\frac{n\pi x}{L})dx=0$$
$$
\int^L_{-L}\cos(\frac{m\pi x}{L})(\frac{n\pi x}{L})dx=\begin{cases}
2L & \text{if }m=n=0 \\
L & \text{if }m=n\neq 0 \\
0 & \text{if }m\neq n
\end{cases}
$$
$$
\int^L_{-L}\sin(\frac{m\pi x}{L}\sin(\frac{n\pi x}{L})dx=\begin{cases}
L & \text{if }m=n \\
0 & \text{if }m\neq n
\end{cases}
$$
Functions are **orthogonal** on an interval when the integral of their product is zero, and a set of functions is **mutually orthogonal** if all functions in the set are orthogonal to each other.
If a Fourier series converges to $f(x)$:
$$f(x)=\frac{a_0}{2} + \sum^\infty_{n=1}\left(a_n\cos(\frac{n\pi x}{L})+b_n\sin(\frac{n\pi x}{L})\right)$$
The **Euler-Fourier** formulae must apply:
$$
\boxed{a_n=\frac 1 L\int^L_{-L}f(x)\cos(\frac{n\pi x}{L})dx} \\
\\
\boxed{b_n=\frac 1 L\int^L_{-L}f(x)\sin(\frac{n\pi x}{L})dx}
$$
## Resources
- [Laplace Table](/resources/ece/laplace.pdf)